Search for the decay of the Higgs boson to a pair of light pseudoscalar bosons in the final state with four bottom quarks in proton-proton collisions at $\sqrt{s}$ = 13 TeV (2403.10341v2)
Abstract: A search is presented for the decay of the 125 GeV Higgs boson (H) to a pair of new light pseudoscalar bosons (a), followed by the prompt decay of each a boson to a bottom quark-antiquark pair, H $\to$ aa $\to$ $\mathrm{b\bar{b}b\bar{b}}$. The analysis is performed using a data sample of proton-proton collisions collected with the CMS detector at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb${-1}$. To reduce the background from standard model processes, the search requires the Higgs boson to be produced in association with a leptonically decaying W or Z boson. The analysis probes the production of new light bosons in a 15 $\lt$ $m_\mathrm{a}$ $\lt$ 60 GeV mass range. Assuming the standard model predictions for the Higgs boson production cross sections for pp $\to$ WH and ZH, model independent upper limits at 95% confidence level are derived for the branching fraction $\mathcal{B}$(H $\to$ aa $\to$ $\mathrm{b\bar{b}b\bar{b}}$). The combined WH and ZH observed upper limit on the branching fraction ranges from 1.10 for $m_\mathrm{a} =$ 20 GeV to 0.36 for $m_\mathrm{a} =$ 60 GeV, complementing other measurements in the $\mu\mu\tau\tau$, $\tau\tau\tau\tau$ and bb$\ell\ell$ ($\ell = $ $\mu$, $\tau$) channels.
- ATLAS Collaboration, “Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, 10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
- CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, 10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
- CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 and 8 TeV”, JHEP 06 (2013) 081, 10.1007/JHEP06(2013)081, arXiv:1303.4571.
- ATLAS Collaboration, “A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery”, Nature 607 (2022) 52, 10.1038/s41586-022-04893-w, arXiv:2207.00092. [Erratum: \DOIhttps://doi.org/10.1038/s41586-022-05581-5].
- CMS Collaboration, “A portrait of the Higgs boson by the CMS experiment ten years after the discovery.”, Nature 607 (2022) 60, 10.1038/s41586-022-04892-x, arXiv:2207.00043.
- G. C. Branco et al., “Theory and phenomenology of two-Higgs-doublet models”, Phys. Rept. 516 (2012) 1, 10.1016/j.physrep.2012.02.002, arXiv:1106.0034.
- D. Curtin et al., “Exotic decays of the 125 GeV Higgs boson”, Phys. Rev. D 90 (2014) 075004, 10.1103/PhysRevD.90.075004, arXiv:1312.4992.
- U. Ellwanger, C. Hugonie, and A. M. Teixeira, “The next-to-minimal supersymmetric standard model”, Phys. Rept. 496 (2010) 1, 10.1016/j.physrep.2010.07.001, arXiv:0910.1785.
- ATLAS Collaboration, “Search for the Higgs boson produced in association with a W𝑊Witalic_W boson and decaying to four b𝑏bitalic_b-quarks via two spin-zero particles in pp𝑝𝑝ppitalic_p italic_p collisions at 13 TeV with the ATLAS detector”, Eur. Phys. J. C 76 (2016) 605, 10.1140/epjc/s10052-016-4418-9, arXiv:1606.08391.
- ATLAS Collaboration, “Search for the Higgs boson produced in association with a vector boson and decaying into two spin-zero particles in the H→aa→4b→𝐻𝑎𝑎→4𝑏H\rightarrow aa\rightarrow 4bitalic_H → italic_a italic_a → 4 italic_b channel in pp𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, JHEP 10 (2018) 031, 10.1007/JHEP10(2018)031, arXiv:1806.07355.
- ATLAS Collaboration, “Search for Higgs boson decays into two new low-mass spin-0 particles in the 4b𝑏bitalic_b channel with the ATLAS detector using pp𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. D 102 (2020) 112006, 10.1103/PhysRevD.102.112006, arXiv:2005.12236.
- ATLAS Collaboration, “Search for new light gauge bosons in Higgs boson decays to four-lepton final states in pp𝑝𝑝ppitalic_p italic_p collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector at the LHC”, Phys. Rev. D 92 (2015) 092001, 10.1103/PhysRevD.92.092001, arXiv:1505.07645.
- CMS Collaboration, “Search for a non-standard-model Higgs boson decaying to a pair of new light bosons in four-muon final states”, Phys. Lett. B 726 (2013) 564, 10.1016/j.physletb.2013.09.009, arXiv:1210.7619.
- CMS Collaboration, “A search for pair production of new light bosons decaying into muons”, Phys. Lett. B 752 (2016) 146, 10.1016/j.physletb.2015.10.067, arXiv:1506.00424.
- CMS Collaboration, “Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, JHEP 10 (2017) 076, 10.1007/JHEP10(2017)076, arXiv:1701.02032.
- CMS Collaboration, “Search for a very light NMSSM Higgs boson produced in decays of the 125 GeV scalar boson and decaying into τ𝜏\tauitalic_τ leptons in pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, JHEP 01 (2016) 079, 10.1007/JHEP01(2016)079, arXiv:1510.06534.
- ATLAS Collaboration, “Search for new phenomena in events with at least three photons collected in pp𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS detector”, Eur. Phys. J. C 76 (2016) 210, 10.1140/epjc/s10052-016-4034-8, arXiv:1509.05051.
- ATLAS Collaboration, “Search for Higgs boson decays to beyond-the-standard-model light bosons in four-lepton events with the ATLAS detector at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 06 (2018) 166, 10.1007/JHEP06(2018)166, arXiv:1802.03388.
- CMS Collaboration, “A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13 TeV”, Phys. Lett. B 796 (2019) 131, 10.1016/j.physletb.2019.07.013, arXiv:1812.00380.
- ATLAS Collaboration, “Search for Higgs bosons decaying to aa in the μμττ𝜇𝜇𝜏𝜏\mu\mu\tau\tauitalic_μ italic_μ italic_τ italic_τ final state in pp collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV with the ATLAS experiment”, Phys. Rev. D 92 (2015) 052002, 10.1103/PhysRevD.92.052002, arXiv:1505.01609.
- CMS Collaboration, “Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state of two muons and two τ𝜏\tauitalic_τ leptons in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 11 (2018) 018, 10.1007/JHEP11(2018)018, arXiv:1805.04865.
- CMS Collaboration, “Search for a light pseudoscalar Higgs boson in the boosted μμττ𝜇𝜇𝜏𝜏\mu\mu\tau\tauitalic_μ italic_μ italic_τ italic_τ final state in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 08 (2020) 139, 10.1007/JHEP08(2020)139, arXiv:2005.08694.
- ATLAS Collaboration, “Search for Higgs boson decays into a pair of light bosons in the bbμμ𝑏𝑏𝜇𝜇bb\mu\muitalic_b italic_b italic_μ italic_μ final state in pp𝑝𝑝ppitalic_p italic_p collision at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Phys. Lett. B 790 (2019) 1, 10.1016/j.physletb.2018.10.073, arXiv:1807.00539.
- CMS Collaboration, “Search for exotic decays of the Higgs boson to a pair of pseudoscalars in the μμ𝜇𝜇\mu\muitalic_μ italic_μbb and ττ𝜏𝜏\tau\tauitalic_τ italic_τbb final states”, 2024. arXiv:2402.13358. Submitted to Eur. Phys. J. C.
- CMS Collaboration, “Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two τ𝜏\tauitalic_τ leptons in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 785 (2018) 462, 10.1016/j.physletb.2018.08.057, arXiv:1805.10191.
- ATLAS Collaboration, “Search for Higgs boson decays into pairs of light (pseudo)scalar particles in the γγjj𝛾𝛾𝑗𝑗\gamma\gamma jjitalic_γ italic_γ italic_j italic_j final state in pp collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Phys. Lett. B 782 (2018) 750, 10.1016/j.physletb.2018.06.011, arXiv:1803.11145.
- M. Cepeda, S. Gori, V. M. Outschoorn, and J. Shelton, “Exotic Higgs decays”, Ann. Rev. Nucl. Part. Sci. 72 (2022) 119, 10.1146/annurev-nucl-102319-024147, arXiv:2111.12751.
- HEPData record for this analysis, 2024. 10.17182/hepdata.147309.
- CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
- CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
- CMS Collaboration, “Performance of the CMS level-1 trigger in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
- P. Nason, “A new method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, 10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
- S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, JHEP 11 (2007) 070, 10.1088/1126-6708/2007/11/070, arXiv:0709.2092.
- S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, 10.1007/JHEP06(2010)043, arXiv:1002.2581.
- CMS Collaboration, “Measurement of differential cross sections for top quark pair production using the lepton+jets final state in proton-proton collisions at 13 TeV”, Phys. Rev. D 95 (2017) 092001, 10.1103/PhysRevD.95.092001, arXiv:1610.04191.
- J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
- CMS Collaboration, “Observation of Higgs boson decay to bottom quarks”, Phys. Rev. Lett. 121 (2018) 121801, 10.1103/PhysRevLett.121.121801, arXiv:1808.08242.
- J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, 10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.
- R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012) 061, 10.1007/JHEP12(2012)061, arXiv:1209.6215.
- LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 1. Inclusive observables”, CERN Report CERN-2011-002, 2011. 10.5170/CERN-2011-002, arXiv:1101.0593.
- LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 2. Differential distributions”, CERN Report CERN-2012-002, 2012. 10.5170/CERN-2012-002, arXiv:1201.3084.
- LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 3. Higgs properties”, CERN Report CERN-2013-004, 2013. 10.5170/CERN-2013-004, arXiv:1307.1347.
- LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs cross sections: 4. deciphering the nature of the Higgs sector”, CERN Report CERN-2017-002-M, 2016. 10.23731/CYRM-2017-002, arXiv:1610.07922.
- NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, 10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.
- P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur. Phys. J. C 74 (2014) 3024, 10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.
- CMS Collaboration, “Event generator tunes obtained from underlying event and multiparton scattering measurements”, Eur. Phys. J. C 76 (2016) 155, 10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.
- CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
- GEANT4 Collaboration, “\GEANTfour—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
- CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8\TeV”, JINST 10 (2015) P06005, 10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.
- CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
- CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.
- M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, Phys. Lett. B 659 (2008) 119, 10.1016/j.physletb.2007.09.077, arXiv:0707.1378.
- CMS Collaboration, “Measurement of the inclusive W and Z production cross sections in pp collisions at s=7\TeV𝑠7\TeV\sqrt{s}=7{\TeV}square-root start_ARG italic_s end_ARG = 7”, JHEP 10 (2011) 132, 10.1007/JHEP10(2011)132, arXiv:1107.4789.
- M. Cacciari, G. P. Salam, and G. Soyez, “The anti-\ktjet clustering algorithm”, JHEP 04 (2008) 063, 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, Eur. Phys. J. C 72 (2012) 1896, 10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
- CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017) P02014, 10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
- CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV”, JINST 13 (2018) P05011, 10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.
- CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 using the CMS detector”, JINST 14 (2019) P07004, 10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.
- UA1 Collaboration, “Experimental observation of isolated large transverse energy electrons with associated missing energy at s=540𝑠540\sqrt{s}=540square-root start_ARG italic_s end_ARG = 540 GeV”, Phys. Lett. B 122 (1983) 103, 10.1016/0370-2693(83)91177-2.
- H. Voss, A. Höcker, J. Stelzer, and F. Tegenfeldt, “TMVA, the toolkit for multivariate data analysis with ROOT”, in XIth International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT), p. 40. 2007. arXiv:physics/0703039. [PoS(ACAT)040]. 10.22323/1.050.0040.
- ATLAS Collaboration, “Measurement of the bb¯𝑏¯𝑏b\overline{b}italic_b over¯ start_ARG italic_b end_ARG dijet cross section in pp collisions at s=7\TeV𝑠7\TeV\sqrt{s}=7\TeVsquare-root start_ARG italic_s end_ARG = 7 with the ATLAS detector”, Eur. Phys. J. C 76 (2016) 670, 10.1140/epjc/s10052-016-4521-y, arXiv:1607.08430.
- ATLAS Collaboration, “Measurement of differential production cross-sections for a Z𝑍Zitalic_Z boson in association with b𝑏bitalic_b-jets in 7 TeV proton-proton collisions with the ATLAS detector”, JHEP 10 (2014) 141, 10.1007/JHEP10(2014)141, arXiv:1407.3643.
- CMS Collaboration, “Measurement of the associated production of a Z boson with charm or bottom quark jets in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13”, Phys. Rev. D 102 (2020) 032007, 10.1103/PhysRevD.102.032007, arXiv:2001.06899.
- CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=13\TeV𝑠13\TeV\sqrt{s}=13\TeVsquare-root start_ARG italic_s end_ARG = 13 in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021) 800, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
- CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.
- CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.
- J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, J. Phys. G 43 (2016) 023001, 10.1088/0954-3899/43/2/023001, arXiv:1510.03865.
- M. Czakon, P. Fiedler, and A. Mitov, “Total top-quark pair-production cross section at hadron colliders through O(αS4)𝑂subscriptsuperscript𝛼4𝑆O(\alpha^{4}_{S})italic_O ( italic_α start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT )”, Phys. Rev. Lett. 110 (2013) 252004, 10.1103/PhysRevLett.110.252004, arXiv:1303.6254.
- N. Kidonakis, “Two-loop soft anomalous dimensions for single top quark associated production with a W−superscript𝑊W^{-}italic_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT or H−superscript𝐻H^{-}italic_H start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT”, Phys. Rev. D 82 (2010) 054018, 10.1103/PhysRevD.82.054018, arXiv:1005.4451.
- N. Kidonakis, “Top quark production”, in Helmholtz International Summer School on Physics of Heavy Quarks and Hadrons, p. 139. 2014. arXiv:1311.0283. 10.3204/DESY-PROC-2013-03/Kidonakis.
- T. Gehrmann et al., “W+W−superscript𝑊superscript𝑊W^{+}W^{-}italic_W start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_W start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT production at hadron colliders in next to next to leading order QCD”, Phys. Rev. Lett. 113 (2014) 212001, 10.1103/PhysRevLett.113.212001, arXiv:1408.5243.
- F. Cascioli et al., “ZZ production at hadron colliders in NNLO QCD”, Phys. Lett. B 735 (2014) 311, 10.1016/j.physletb.2014.06.056, arXiv:1405.2219.
- CMS Collaboration, “Measurement of the differential Drell-Yan cross section in proton-proton collisions at ss\sqrt{\mathrm{s}}square-root start_ARG roman_s end_ARG = 13 TeV”, JHEP 12 (2019) 059, 10.1007/JHEP12(2019)059, arXiv:1812.10529.
- CMS Collaboration, “Measurement of the inelastic proton-proton cross section at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 07 (2018) 161, 10.1007/JHEP07(2018)161, arXiv:1802.02613.
- R. J. Barlow and C. Beeston, “Fitting using finite Monte Carlo samples”, Comput. Phys. Commun. 77 (1993) 219, 10.1016/0010-4655(93)90005-W.
- A. L. Read, “Presentation of search results: The \CLstechnique”, J. Phys. G 28 (2002) 2693, 10.1088/0954-3899/28/10/313.
- G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, 10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum: \DOI10.1140/epjc/s10052-013-2501-z].
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.