Search for exotic decays of the Higgs boson to a pair of pseudoscalars in the $μμ$bb and $ττ$bb final states (2402.13358v2)
Abstract: A search for exotic decays of the Higgs boson (H) with a mass of 125 GeV to a pair of light pseudoscalars $\mathrm{a}1$ is performed in final states where one pseudoscalar decays to two b quarks and the other to a pair of muons or $\tau$ leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb${-1}$ recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level (CL) on the Higgs boson branching fraction to $\mu\mu$bb and to $\tau\tau$bb, via a pair of $\mathrm{a}_1$s. The limits depend on the pseudoscalar mass $m{\mathrm{a}1}$ and are observed to be in the range (0.17-3.3) $\times$ 10${-4}$ and (1.7-7.7) $\times$ 10${-2}$ in the $\mu\mu$bb and $\tau\tau$bb final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine model-independent upper limits on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$ $\to$ $\ell\ell$bb) at 95% CL, with $\ell$ being a muon or a $\tau$ lepton. For different types of 2HDM+S, upper bounds on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$) are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space, $\mathcal{B}($H $\to$ $\mathrm{a}_1\mathrm{a}_1$) values above 0.23 are excluded at 95% CL for $m{\mathrm{a}_1}$ values between 15 and 60 GeV.
- ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, 10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
- CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, 10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
- CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 and 8 TeV”, JHEP 06 (2013) 081, 10.1007/JHEP06(2013)081, arXiv:1303.4571.
- F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons”, Phys. Rev. Lett. 13 (1964) 321, 10.1103/PhysRevLett.13.321.
- P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, Phys. Lett. 12 (1964) 132, 10.1016/0031-9163(64)91136-9.
- P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, Phys. Rev. Lett. 13 (1964) 508, 10.1103/PhysRevLett.13.508.
- G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws and massless particles”, Phys. Rev. Lett. 13 (1964) 585, 10.1103/PhysRevLett.13.585.
- P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, Phys. Rev. 145 (1966) 1156, 10.1103/PhysRev.145.1156.
- T. W. B. Kibble, “Symmetry breaking in non-abelian gauge theories”, Phys. Rev. 155 (1967) 1554, 10.1103/PhysRev.155.1554.
- G. C. Branco et al., “Theory and phenomenology of two-Higgs-doublet models”, Phys. Rept. 516 (2012) 1, 10.1016/j.physrep.2012.02.002, arXiv:1106.0034.
- A. Djouadi, “The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model”, Phys. Rept. 459 (2008) 1, 10.1016/j.physrep.2007.10.005, arXiv:hep-ph/0503173.
- T. Robens and T. Stefaniak, “Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1”, Eur. Phys. J. C 75 (2015) 104, 10.1140/epjc/s10052-015-3323-y, arXiv:1501.02234.
- T. Robens, T. Stefaniak, and J. Wittbrodt, “Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios”, Eur. Phys. J. C 80 (2020) 151, 10.1140/epjc/s10052-020-7655-x, arXiv:1908.08554.
- ATLAS Collaboration, “A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery”, Nature 607 (2022) 52, 10.1038/s41586-022-04893-w, arXiv:2207.00092. [Erratum: \DOI10.1038/s41586-022-05581-5].
- CMS Collaboration, “A portrait of the Higgs boson by the CMS experiment ten years after the discovery”, Nature 607 (2022) 60, 10.1038/s41586-022-04892-x, arXiv:2207.00043.
- D. Curtin et al., “Exotic decays of the 125 GeV Higgs boson”, Phys. Rev. D 90 (2014) 075004, 10.1103/PhysRevD.90.075004, arXiv:1312.4992.
- B. Grzadkowski and P. Osland, “Tempered Two-Higgs-Doublet Model”, Phys. Rev. D 82 (2010) 125026, 10.1103/PhysRevD.82.125026, arXiv:0910.4068.
- A. Drozd, B. Grzadkowski, J. F. Gunion, and Y. Jiang, “Extending two-Higgs-doublet models by a singlet scalar field - the Case for Dark Matter”, JHEP 11 (2014) 105, 10.1007/JHEP11(2014)105, arXiv:1408.2106.
- S. Ramos-Sanchez, “The μ𝜇\muitalic_μ-problem, the NMSSM and string theory”, Fortschritte der Phys. 58 (2010) 748, 10.1002/prop.201000058, arXiv:1003.1307.
- D. de Florian et al., “Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector”, CERN Report CERN-2017-002-M, 2016. 10.23731/CYRM-2017-002, arXiv:1610.07922.
- ATLAS Collaboration, “Search for Higgs boson decays into a pair of pseudoscalar particles in the bbμμ𝑏𝑏𝜇𝜇bb\mu\muitalic_b italic_b italic_μ italic_μ final state with the ATLAS detector in pp𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. D 105 (2022) 012006, 10.1103/physrevd.105.012006, arXiv:2110.00313.
- ATLAS Collaboration, “Search for Higgs boson decays into a pair of light bosons in the \cPqb\cPqb\PGm\PGm\cPqb\cPqb\PGm\PGm\cPqb\cPqb\PGm\PGm final state in \Pp\Pp collision at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Phys. Lett. B 790 (2019) 1, 10.1016/j.physletb.2018.10.073, arXiv:1807.00539.
- CMS Collaboration, “Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in \Pp\Pp collisions at 13 TeV”, Phys. Lett. B 795 (2019) 398, 10.1016/j.physletb.2019.06.021, arXiv:1812.06359.
- CMS Collaboration, “Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, JHEP 10 (2017) 076, 10.1007/JHEP10(2017)076, arXiv:1701.02032.
- CMS Collaboration, “Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two τ𝜏\tauitalic_τ leptons in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 785 (2018) 462, 10.1016/j.physletb.2018.08.057, arXiv:1805.10191.
- HEPData record for this analysis, 2024. 10.17182/hepdata.145999.
- CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
- CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
- T. Sjöstrand et al., “An Introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
- NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, 10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.
- J. Alwall, S. de Visscher, and F. Maltoni, “QCD radiation in the production of heavy colored particles at the LHC”, JHEP 02 (2009) 017, 10.1088/1126-6708/2009/02/017, arXiv:0810.5350.
- J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, 10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.
- R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012) 061, 10.1007/JHEP12(2012)061, arXiv:1209.6215.
- J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
- P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur. Phys. J. C 74 (2014) 3024, 10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.
- CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
- GEANT4 Collaboration, “GEANT4–a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
- J. Allison et al., “Geant4 developments and applications”, IEEE Trans. Nucl. Sci. 53 (2006) 270, 10.1109/TNS.2006.869826.
- CMS Collaboration, “Measurements of Higgs boson production in the decay channel with a pair of τ𝜏\tauitalic_τ leptons in proton–proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 83 (2023), no. 7, 562, 10.1140/epjc/s10052-023-11452-8, arXiv:2204.12957.
- P. Nason, “A New method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, 10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
- S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with Parton Shower simulations: the POWHEG method”, JHEP 11 (2007) 070, 10.1088/1126-6708/2007/11/070, arXiv:0709.2092.
- S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, 10.1007/JHEP06(2010)043, arXiv:1002.2581.
- S. Alioli et al., “Jet pair production in POWHEG”, JHEP 04 (2011) 081, 10.1007/JHEP04(2011)081, arXiv:1012.3380.
- M. Czakon et al., “Top-pair production at the LHC through NNLO QCD and NLO EW”, JHEP 10 (2017) 186, 10.1007/JHEP10(2017)186, arXiv:1705.04105.
- M. Czakon and A. Mitov, “Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders”, Comput. Phys. Commun. 185 (2014) 2930, 10.1016/j.cpc.2014.06.021, arXiv:1112.5675.
- M. Botje et al., “The PDF4LHC Working Group interim recommendations”, 2011. arXiv:1101.0538.
- A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Uncertainties on alpha(S) in global PDF analyses and implications for predicted hadronic cross sections”, Eur. Phys. J. C 64 (2009) 653, 10.1140/epjc/s10052-009-1164-2, arXiv:0905.3531.
- J. Gao et al., “CT10 next-to-next-to-leading order global analysis of QCD”, Phys. Rev. D 89 (2014), no. 3, 033009, 10.1103/PhysRevD.89.033009, arXiv:1302.6246.
- R. D. Ball et al., “Parton distributions with LHC data”, Nucl. Phys. B 867 (2013) 244, 10.1016/j.nuclphysb.2012.10.003, arXiv:1207.1303.
- J. Campbell, T. Neumann, and Z. Sullivan, “Single-top-quark production in the t𝑡titalic_t-channel at NNLO”, JHEP 02 (2021) 040, 10.1007/JHEP02(2021)040, arXiv:2012.01574.
- PDF4LHC Working Group Collaboration, “The PDF4LHC21 combination of global PDF fits for the LHC Run III”, J. Phys. G 49 (2022), no. 8, 080501, 10.1088/1361-6471/ac7216, arXiv:2203.05506.
- K. Melnikov and F. Petriello, “Electroweak gauge boson production at hadron colliders through O(αs2)𝑂superscriptsubscript𝛼𝑠2O(\alpha_{s}^{2})italic_O ( italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )”, Phys. Rev. D 74 (2006) 114017, 10.1103/PhysRevD.74.114017, arXiv:hep-ph/0609070.
- A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC”, Eur. Phys. J. C 63 (2009) 189–285, 10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002.
- S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO Higgs boson production via gluon fusion matched with shower in POWHEG”, JHEP 04 (2009) 002, 10.1088/1126-6708/2009/04/002, arXiv:0812.0578.
- E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini, “Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM”, JHEP 02 (2012) 088, 10.1007/JHEP02(2012)088, arXiv:1111.2854.
- P. Nason and C. Oleari, “NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG”, JHEP 02 (2010) 037, 10.1007/JHEP02(2010)037, arXiv:0911.5299.
- G. Luisoni, P. Nason, C. Oleari, and F. Tramontano, “\PH\PWpm\PH\PWpm\PH\PWpm/\PH\PZ\PH\PZ\PH\PZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO”, JHEP 10 (2013) 083, 10.1007/JHEP10(2013)083, arXiv:1306.2542.
- H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth, “Higgs boson production in association with top quarks in the POWHEG BOX”, Phys. Rev. D 91 (2015) 094003, 10.1103/PhysRevD.91.094003, arXiv:1501.04498.
- CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
- CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.
- CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
- CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, 10.1088/1748-0221/16/05/p05014, arXiv:2012.06888.
- M. Cacciari, G. P. Salam, and G. Soyez, “The anti-ktsubscript𝑘𝑡k_{t}italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT jet clustering algorithm”, JHEP 04 (2008) 063, 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
- M. Cacciari, G. P. Salam, and G. Soyez, “FastJet User Manual”, Eur. Phys. J. C 72 (2012) 1896, 10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
- CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017.
- CMS Collaboration, “Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS”, JINST 6 (2011) P11002, 10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.
- E. Bols et al., “Jet Flavour Classification Using DeepJet”, JINST 15 (2020) P12012, 10.1088/1748-0221/15/12/P12012, arXiv:2008.10519.
- CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in \Pp\Pp collisions at 13 TeV”, JINST 13 (2018) P05011, 10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.
- CMS Collaboration, “Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector”, CMS Detector Performance Note CMS-DP-2018-058, 2018.
- CMS Collaboration, “Performance of reconstruction and identification of τ𝜏\tauitalic_τ leptons decaying to hadrons and ντsubscript𝜈𝜏\nu_{\tau}italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P10005, 10.1088/1748-0221/13/10/P10005, arXiv:1809.02816.
- CMS Collaboration, “Identification of hadronic tau lepton decays using a deep neural network”, JINST 17 (2022) P07023, 10.1088/1748-0221/17/07/P07023, arXiv:2201.08458.
- CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the CMS detector”, JINST 14 (2019) P07004, 10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.
- J. Lever, M. Krzywinski, and N. Altman, “Principal component analysis”, Nature Methods 14 (2017) 641, 10.1038/nmeth.4346.
- CDF Collaboration, “Search for neutral Higgs bosons of the minimal supersymmetric standard model decaying to τ𝜏\tauitalic_τ pairs in \Pp\Pp¯\Pp¯\Pp\Pp\bar{\Pp}over¯ start_ARG end_ARG collisions at s=1.96\TeV𝑠1.96\TeV\sqrt{s}=1.96\TeVsquare-root start_ARG italic_s end_ARG = 1.96”, Phys. Rev. Lett. 96 (2006) 011802, 10.1103/PhysRevLett.96.011802, arXiv:hep-ex/0508051.
- L. Bianchini et al., “Reconstruction of the Higgs mass in events with Higgs bosons decaying into a pair of tau leptons using matrix element technique”, Nucl. Instrum. Meth. A 862 (2017) 54, 10.1016/j.nima.2017.05.001, arXiv:1603.05910.
- P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies, “Handling uncertainties in background shapes: the discrete profiling method”, JINST 10 (2015) P04015, 10.1088/1748-0221/10/04/P04015, arXiv:1408.6865.
- CMS Collaboration, “Observation of the diphoton decay of the Higgs boson and measurement of its properties”, Eur. Phys. J. C 74 (2014) 3076, 10.1140/epjc/s10052-014-3076-z, arXiv:1407.0558.
- ATLAS, CMS Collaboration, “Combined Measurement of the Higgs Boson Mass in pp𝑝𝑝ppitalic_p italic_p Collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 and 8 TeV with the ATLAS and CMS Experiments”, Phys. Rev. Lett. 114 (2015) 191803, 10.1103/PhysRevLett.114.191803, arXiv:1503.07589.
- CMS Collaboration, “An embedding technique to determine ττ𝜏𝜏\tau\tauitalic_τ italic_τ backgrounds in proton-proton collision data”, JINST 14 (2019) P06032, 10.1088/1748-0221/14/06/P06032, arXiv:1903.01216.
- M. J. Oreglia, “A study of the reactions ψ′→γγψ→superscript𝜓′𝛾𝛾𝜓\psi^{\prime}\to\gamma\gamma\psiitalic_ψ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → italic_γ italic_γ italic_ψ”. PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236.
- T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, 10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.
- A. L. Read, “Presentation of search results: The CLss{}_{\text{s}}start_FLOATSUBSCRIPT s end_FLOATSUBSCRIPT technique”, J. Phys. G 28 (2002) 2693, 10.1088/0954-3899/28/10/313.
- G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, 10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum: \DOI10.1140/epjc/s10052-013-2501-z].
- U. Haisch, J. F. Kamenik, A. Malinauskas, and M. Spira, “Collider constraints on light pseudoscalars”, JHEP 03 (2018) 178, 10.1007/JHEP03(2018)178, arXiv:1802.02156.
- CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021) 800, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
- CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at s=13\TeV𝑠13\TeV\sqrt{s}={13\TeV}square-root start_ARG italic_s end_ARG = 13”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.
- CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at s=13\TeV𝑠13\TeV\sqrt{s}={13\TeV}square-root start_ARG italic_s end_ARG = 13”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.
- CMS Collaboration, “Measurement of the inelastic proton-proton cross section at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 07 (2018) 161, 10.1007/JHEP07(2018)161, arXiv:1802.02613.
- CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
- CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017), no. 02, P02014, 10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
- CMS Collaboration, “Measurement of the Inclusive W𝑊Witalic_W and Z𝑍Zitalic_Z Production Cross Sections in pp𝑝𝑝ppitalic_p italic_p Collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV”, JHEP 10 (2011) 132, 10.1007/JHEP10(2011)132, arXiv:1107.4789.
- CMS Collaboration, “Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of τ𝜏\tauitalic_τ leptons in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. Lett. 128 (2022) 081805, 10.1103/PhysRevLett.128.081805, arXiv:2107.11486.
- CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8\TeV”, JINST 10 (2015) P06005, 10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.
- R. J. Barlow and C. Beeston, “Fitting using finite Monte Carlo samples”, Comput. Phys. Commun. 77 (1993) 219, 10.1016/0010-4655(93)90005-W.
- J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, J. Phys. G 43 (2016) 023001, 10.1088/0954-3899/43/2/023001, arXiv:1510.03865.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.