Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Search for exotic decays of the Higgs boson to a pair of pseudoscalars in the $μμ$bb and $ττ$bb final states (2402.13358v2)

Published 20 Feb 2024 in hep-ex

Abstract: A search for exotic decays of the Higgs boson (H) with a mass of 125 GeV to a pair of light pseudoscalars $\mathrm{a}1$ is performed in final states where one pseudoscalar decays to two b quarks and the other to a pair of muons or $\tau$ leptons. A data sample of proton-proton collisions at $\sqrt{s}$ = 13 TeV corresponding to an integrated luminosity of 138 fb${-1}$ recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level (CL) on the Higgs boson branching fraction to $\mu\mu$bb and to $\tau\tau$bb, via a pair of $\mathrm{a}_1$s. The limits depend on the pseudoscalar mass $m{\mathrm{a}1}$ and are observed to be in the range (0.17-3.3) $\times$ 10${-4}$ and (1.7-7.7) $\times$ 10${-2}$ in the $\mu\mu$bb and $\tau\tau$bb final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine model-independent upper limits on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$ $\to$ $\ell\ell$bb) at 95% CL, with $\ell$ being a muon or a $\tau$ lepton. For different types of 2HDM+S, upper bounds on the branching fraction $\mathcal{B}$(H $\to$ $\mathrm{a}_1\mathrm{a}_1$) are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space, $\mathcal{B}($H $\to$ $\mathrm{a}_1\mathrm{a}_1$) values above 0.23 are excluded at 95% CL for $m{\mathrm{a}_1}$ values between 15 and 60 GeV.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (95)
  1. ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, Phys. Lett. B 716 (2012) 1, 10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
  2. CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, 10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
  3. CMS Collaboration, “Observation of a new boson with mass near 125 GeV in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 7 and 8 TeV”, JHEP 06 (2013) 081, 10.1007/JHEP06(2013)081, arXiv:1303.4571.
  4. F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons”, Phys. Rev. Lett. 13 (1964) 321, 10.1103/PhysRevLett.13.321.
  5. P. W. Higgs, “Broken symmetries, massless particles and gauge fields”, Phys. Lett. 12 (1964) 132, 10.1016/0031-9163(64)91136-9.
  6. P. W. Higgs, “Broken symmetries and the masses of gauge bosons”, Phys. Rev. Lett. 13 (1964) 508, 10.1103/PhysRevLett.13.508.
  7. G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global conservation laws and massless particles”, Phys. Rev. Lett. 13 (1964) 585, 10.1103/PhysRevLett.13.585.
  8. P. W. Higgs, “Spontaneous symmetry breakdown without massless bosons”, Phys. Rev. 145 (1966) 1156, 10.1103/PhysRev.145.1156.
  9. T. W. B. Kibble, “Symmetry breaking in non-abelian gauge theories”, Phys. Rev. 155 (1967) 1554, 10.1103/PhysRev.155.1554.
  10. G. C. Branco et al., “Theory and phenomenology of two-Higgs-doublet models”, Phys. Rept. 516 (2012) 1, 10.1016/j.physrep.2012.02.002, arXiv:1106.0034.
  11. A. Djouadi, “The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model”, Phys. Rept. 459 (2008) 1, 10.1016/j.physrep.2007.10.005, arXiv:hep-ph/0503173.
  12. T. Robens and T. Stefaniak, “Status of the Higgs Singlet Extension of the Standard Model after LHC Run 1”, Eur. Phys. J. C 75 (2015) 104, 10.1140/epjc/s10052-015-3323-y, arXiv:1501.02234.
  13. T. Robens, T. Stefaniak, and J. Wittbrodt, “Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios”, Eur. Phys. J. C 80 (2020) 151, 10.1140/epjc/s10052-020-7655-x, arXiv:1908.08554.
  14. ATLAS Collaboration, “A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery”, Nature 607 (2022) 52, 10.1038/s41586-022-04893-w, arXiv:2207.00092. [Erratum: \DOI10.1038/s41586-022-05581-5].
  15. CMS Collaboration, “A portrait of the Higgs boson by the CMS experiment ten years after the discovery”, Nature 607 (2022) 60, 10.1038/s41586-022-04892-x, arXiv:2207.00043.
  16. D. Curtin et al., “Exotic decays of the 125 GeV Higgs boson”, Phys. Rev. D 90 (2014) 075004, 10.1103/PhysRevD.90.075004, arXiv:1312.4992.
  17. B. Grzadkowski and P. Osland, “Tempered Two-Higgs-Doublet Model”, Phys. Rev. D 82 (2010) 125026, 10.1103/PhysRevD.82.125026, arXiv:0910.4068.
  18. A. Drozd, B. Grzadkowski, J. F. Gunion, and Y. Jiang, “Extending two-Higgs-doublet models by a singlet scalar field - the Case for Dark Matter”, JHEP 11 (2014) 105, 10.1007/JHEP11(2014)105, arXiv:1408.2106.
  19. S. Ramos-Sanchez, “The μ𝜇\muitalic_μ-problem, the NMSSM and string theory”, Fortschritte der Phys. 58 (2010) 748, 10.1002/prop.201000058, arXiv:1003.1307.
  20. D. de Florian et al., “Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector”, CERN Report CERN-2017-002-M, 2016. 10.23731/CYRM-2017-002, arXiv:1610.07922.
  21. ATLAS Collaboration, “Search for Higgs boson decays into a pair of pseudoscalar particles in the b⁢b⁢μ⁢μ𝑏𝑏𝜇𝜇bb\mu\muitalic_b italic_b italic_μ italic_μ final state with the ATLAS detector in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. D 105 (2022) 012006, 10.1103/physrevd.105.012006, arXiv:2110.00313.
  22. ATLAS Collaboration, “Search for Higgs boson decays into a pair of light bosons in the \cPqb⁢\cPqb⁢\PGm⁢\PGm\cPqb\cPqb\PGm\PGm\cPqb\cPqb\PGm\PGm final state in \Pp\Pp collision at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector”, Phys. Lett. B 790 (2019) 1, 10.1016/j.physletb.2018.10.073, arXiv:1807.00539.
  23. CMS Collaboration, “Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two muons and two b quarks in \Pp\Pp collisions at 13 TeV”, Phys. Lett. B 795 (2019) 398, 10.1016/j.physletb.2019.06.021, arXiv:1812.06359.
  24. CMS Collaboration, “Search for light bosons in decays of the 125 GeV Higgs boson in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8 TeV”, JHEP 10 (2017) 076, 10.1007/JHEP10(2017)076, arXiv:1701.02032.
  25. CMS Collaboration, “Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two τ𝜏\tauitalic_τ leptons in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Lett. B 785 (2018) 462, 10.1016/j.physletb.2018.08.057, arXiv:1805.10191.
  26. HEPData record for this analysis, 2024. 10.17182/hepdata.145999.
  27. CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) P01020, 10.1088/1748-0221/12/01/P01020, arXiv:1609.02366.
  28. CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, 10.1088/1748-0221/3/08/S08004.
  29. T. Sjöstrand et al., “An Introduction to PYTHIA 8.2”, Comput. Phys. Commun. 191 (2015) 159, 10.1016/j.cpc.2015.01.024, arXiv:1410.3012.
  30. NNPDF Collaboration, “Parton distributions from high-precision collider data”, Eur. Phys. J. C 77 (2017) 663, 10.1140/epjc/s10052-017-5199-5, arXiv:1706.00428.
  31. J. Alwall, S. de Visscher, and F. Maltoni, “QCD radiation in the production of heavy colored particles at the LHC”, JHEP 02 (2009) 017, 10.1088/1126-6708/2009/02/017, arXiv:0810.5350.
  32. J. Alwall et al., “Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions”, Eur. Phys. J. C 53 (2008) 473, 10.1140/epjc/s10052-007-0490-5, arXiv:0706.2569.
  33. R. Frederix and S. Frixione, “Merging meets matching in MC@NLO”, JHEP 12 (2012) 061, 10.1007/JHEP12(2012)061, arXiv:1209.6215.
  34. J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, 10.1007/JHEP07(2014)079, arXiv:1405.0301.
  35. P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur. Phys. J. C 74 (2014) 3024, 10.1140/epjc/s10052-014-3024-y, arXiv:1404.5630.
  36. CMS Collaboration, “Extraction and validation of a new set of CMS PYTHIA8 tunes from underlying-event measurements”, Eur. Phys. J. C 80 (2020) 4, 10.1140/epjc/s10052-019-7499-4, arXiv:1903.12179.
  37. GEANT4 Collaboration, “GEANT4–a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, 10.1016/S0168-9002(03)01368-8.
  38. J. Allison et al., “Geant4 developments and applications”, IEEE Trans. Nucl. Sci. 53 (2006) 270, 10.1109/TNS.2006.869826.
  39. CMS Collaboration, “Measurements of Higgs boson production in the decay channel with a pair of τ𝜏\tauitalic_τ leptons in proton–proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, Eur. Phys. J. C 83 (2023), no. 7, 562, 10.1140/epjc/s10052-023-11452-8, arXiv:2204.12957.
  40. P. Nason, “A New method for combining NLO QCD with shower Monte Carlo algorithms”, JHEP 11 (2004) 040, 10.1088/1126-6708/2004/11/040, arXiv:hep-ph/0409146.
  41. S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with Parton Shower simulations: the POWHEG method”, JHEP 11 (2007) 070, 10.1088/1126-6708/2007/11/070, arXiv:0709.2092.
  42. S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, JHEP 06 (2010) 043, 10.1007/JHEP06(2010)043, arXiv:1002.2581.
  43. S. Alioli et al., “Jet pair production in POWHEG”, JHEP 04 (2011) 081, 10.1007/JHEP04(2011)081, arXiv:1012.3380.
  44. M. Czakon et al., “Top-pair production at the LHC through NNLO QCD and NLO EW”, JHEP 10 (2017) 186, 10.1007/JHEP10(2017)186, arXiv:1705.04105.
  45. M. Czakon and A. Mitov, “Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders”, Comput. Phys. Commun. 185 (2014) 2930, 10.1016/j.cpc.2014.06.021, arXiv:1112.5675.
  46. M. Botje et al., “The PDF4LHC Working Group interim recommendations”, 2011. arXiv:1101.0538.
  47. A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Uncertainties on alpha(S) in global PDF analyses and implications for predicted hadronic cross sections”, Eur. Phys. J. C 64 (2009) 653, 10.1140/epjc/s10052-009-1164-2, arXiv:0905.3531.
  48. J. Gao et al., “CT10 next-to-next-to-leading order global analysis of QCD”, Phys. Rev. D 89 (2014), no. 3, 033009, 10.1103/PhysRevD.89.033009, arXiv:1302.6246.
  49. R. D. Ball et al., “Parton distributions with LHC data”, Nucl. Phys. B 867 (2013) 244, 10.1016/j.nuclphysb.2012.10.003, arXiv:1207.1303.
  50. J. Campbell, T. Neumann, and Z. Sullivan, “Single-top-quark production in the t𝑡titalic_t-channel at NNLO”, JHEP 02 (2021) 040, 10.1007/JHEP02(2021)040, arXiv:2012.01574.
  51. PDF4LHC Working Group Collaboration, “The PDF4LHC21 combination of global PDF fits for the LHC Run III”, J. Phys. G 49 (2022), no. 8, 080501, 10.1088/1361-6471/ac7216, arXiv:2203.05506.
  52. K. Melnikov and F. Petriello, “Electroweak gauge boson production at hadron colliders through O⁢(αs2)𝑂superscriptsubscript𝛼𝑠2O(\alpha_{s}^{2})italic_O ( italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT )”, Phys. Rev. D 74 (2006) 114017, 10.1103/PhysRevD.74.114017, arXiv:hep-ph/0609070.
  53. A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC”, Eur. Phys. J. C 63 (2009) 189–285, 10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002.
  54. S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO Higgs boson production via gluon fusion matched with shower in POWHEG”, JHEP 04 (2009) 002, 10.1088/1126-6708/2009/04/002, arXiv:0812.0578.
  55. E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini, “Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM”, JHEP 02 (2012) 088, 10.1007/JHEP02(2012)088, arXiv:1111.2854.
  56. P. Nason and C. Oleari, “NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG”, JHEP 02 (2010) 037, 10.1007/JHEP02(2010)037, arXiv:0911.5299.
  57. G. Luisoni, P. Nason, C. Oleari, and F. Tramontano, “\PH⁢\PWpm\PH\PWpm\PH\PWpm/\PH⁢\PZ\PH\PZ\PH\PZ + 0 and 1 jet at NLO with the POWHEG BOX interfaced to GoSam and their merging within MiNLO”, JHEP 10 (2013) 083, 10.1007/JHEP10(2013)083, arXiv:1306.2542.
  58. H. B. Hartanto, B. Jager, L. Reina, and D. Wackeroth, “Higgs boson production in association with top quarks in the POWHEG BOX”, Phys. Rev. D 91 (2015) 094003, 10.1103/PhysRevD.91.094003, arXiv:1501.04498.
  59. CMS Collaboration, “Particle-flow reconstruction and global event description with the CMS detector”, JINST 12 (2017) P10003, 10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.
  60. CMS Collaboration, “Technical proposal for the Phase-II upgrade of the Compact Muon Solenoid”, CMS Technical Proposal CERN-LHCC-2015-010, CMS-TDR-15-02, 2015.
  61. CMS Collaboration, “Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P06015, 10.1088/1748-0221/13/06/P06015, arXiv:1804.04528.
  62. CMS Collaboration, “Electron and photon reconstruction and identification with the CMS experiment at the CERN LHC”, JINST 16 (2021) P05014, 10.1088/1748-0221/16/05/p05014, arXiv:2012.06888.
  63. M. Cacciari, G. P. Salam, and G. Soyez, “The anti-ktsubscript𝑘𝑡k_{t}italic_k start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT jet clustering algorithm”, JHEP 04 (2008) 063, 10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
  64. M. Cacciari, G. P. Salam, and G. Soyez, “FastJet User Manual”, Eur. Phys. J. C 72 (2012) 1896, 10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.
  65. CMS Collaboration, “Jet algorithms performance in 13 TeV data”, CMS Physics Analysis Summary CMS-PAS-JME-16-003, 2017.
  66. CMS Collaboration, “Determination of Jet Energy Calibration and Transverse Momentum Resolution in CMS”, JINST 6 (2011) P11002, 10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.
  67. E. Bols et al., “Jet Flavour Classification Using DeepJet”, JINST 15 (2020) P12012, 10.1088/1748-0221/15/12/P12012, arXiv:2008.10519.
  68. CMS Collaboration, “Identification of heavy-flavour jets with the CMS detector in \Pp\Pp collisions at 13 TeV”, JINST 13 (2018) P05011, 10.1088/1748-0221/13/05/P05011, arXiv:1712.07158.
  69. CMS Collaboration, “Performance of the DeepJet b tagging algorithm using 41.9/fb of data from proton-proton collisions at 13 TeV with Phase 1 CMS detector”, CMS Detector Performance Note CMS-DP-2018-058, 2018.
  70. CMS Collaboration, “Performance of reconstruction and identification of τ𝜏\tauitalic_τ leptons decaying to hadrons and ντsubscript𝜈𝜏\nu_{\tau}italic_ν start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 13 (2018) P10005, 10.1088/1748-0221/13/10/P10005, arXiv:1809.02816.
  71. CMS Collaboration, “Identification of hadronic tau lepton decays using a deep neural network”, JINST 17 (2022) P07023, 10.1088/1748-0221/17/07/P07023, arXiv:2201.08458.
  72. CMS Collaboration, “Performance of missing transverse momentum reconstruction in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV using the CMS detector”, JINST 14 (2019) P07004, 10.1088/1748-0221/14/07/P07004, arXiv:1903.06078.
  73. J. Lever, M. Krzywinski, and N. Altman, “Principal component analysis”, Nature Methods 14 (2017) 641, 10.1038/nmeth.4346.
  74. CDF Collaboration, “Search for neutral Higgs bosons of the minimal supersymmetric standard model decaying to τ𝜏\tauitalic_τ pairs in \Pp⁢\Pp¯\Pp¯\Pp\Pp\bar{\Pp}over¯ start_ARG end_ARG collisions at s=1.96⁢\TeV𝑠1.96\TeV\sqrt{s}=1.96\TeVsquare-root start_ARG italic_s end_ARG = 1.96”, Phys. Rev. Lett. 96 (2006) 011802, 10.1103/PhysRevLett.96.011802, arXiv:hep-ex/0508051.
  75. L. Bianchini et al., “Reconstruction of the Higgs mass in events with Higgs bosons decaying into a pair of tau leptons using matrix element technique”, Nucl. Instrum. Meth. A 862 (2017) 54, 10.1016/j.nima.2017.05.001, arXiv:1603.05910.
  76. P. D. Dauncey, M. Kenzie, N. Wardle, and G. J. Davies, “Handling uncertainties in background shapes: the discrete profiling method”, JINST 10 (2015) P04015, 10.1088/1748-0221/10/04/P04015, arXiv:1408.6865.
  77. CMS Collaboration, “Observation of the diphoton decay of the Higgs boson and measurement of its properties”, Eur. Phys. J. C 74 (2014) 3076, 10.1140/epjc/s10052-014-3076-z, arXiv:1407.0558.
  78. ATLAS, CMS Collaboration, “Combined Measurement of the Higgs Boson Mass in p⁢p𝑝𝑝ppitalic_p italic_p Collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 and 8 TeV with the ATLAS and CMS Experiments”, Phys. Rev. Lett. 114 (2015) 191803, 10.1103/PhysRevLett.114.191803, arXiv:1503.07589.
  79. CMS Collaboration, “An embedding technique to determine τ⁢τ𝜏𝜏\tau\tauitalic_τ italic_τ backgrounds in proton-proton collision data”, JINST 14 (2019) P06032, 10.1088/1748-0221/14/06/P06032, arXiv:1903.01216.
  80. M. J. Oreglia, “A study of the reactions ψ′→γ⁢γ⁢ψ→superscript𝜓′𝛾𝛾𝜓\psi^{\prime}\to\gamma\gamma\psiitalic_ψ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → italic_γ italic_γ italic_ψ”. PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236.
  81. T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, 10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.
  82. A. L. Read, “Presentation of search results: The CLss{}_{\text{s}}start_FLOATSUBSCRIPT s end_FLOATSUBSCRIPT technique”, J. Phys. G 28 (2002) 2693, 10.1088/0954-3899/28/10/313.
  83. G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for likelihood-based tests of new physics”, Eur. Phys. J. C 71 (2011) 1554, 10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum: \DOI10.1140/epjc/s10052-013-2501-z].
  84. U. Haisch, J. F. Kamenik, A. Malinauskas, and M. Spira, “Collider constraints on light pseudoscalars”, JHEP 03 (2018) 178, 10.1007/JHEP03(2018)178, arXiv:1802.02156.
  85. CMS Collaboration, “Precision luminosity measurement in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV in 2015 and 2016 at CMS”, Eur. Phys. J. C 81 (2021) 800, 10.1140/epjc/s10052-021-09538-2, arXiv:2104.01927.
  86. CMS Collaboration, “CMS luminosity measurement for the 2017 data-taking period at s=13⁢\TeV𝑠13\TeV\sqrt{s}={13\TeV}square-root start_ARG italic_s end_ARG = 13”, CMS Physics Analysis Summary CMS-PAS-LUM-17-004, 2018.
  87. CMS Collaboration, “CMS luminosity measurement for the 2018 data-taking period at s=13⁢\TeV𝑠13\TeV\sqrt{s}={13\TeV}square-root start_ARG italic_s end_ARG = 13”, CMS Physics Analysis Summary CMS-PAS-LUM-18-002, 2019.
  88. CMS Collaboration, “Measurement of the inelastic proton-proton cross section at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, JHEP 07 (2018) 161, 10.1007/JHEP07(2018)161, arXiv:1802.02613.
  89. CMS Collaboration, “Performance of the CMS Level-1 trigger in proton-proton collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV”, JINST 15 (2020) P10017, 10.1088/1748-0221/15/10/P10017, arXiv:2006.10165.
  90. CMS Collaboration, “Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV”, JINST 12 (2017), no. 02, P02014, 10.1088/1748-0221/12/02/P02014, arXiv:1607.03663.
  91. CMS Collaboration, “Measurement of the Inclusive W𝑊Witalic_W and Z𝑍Zitalic_Z Production Cross Sections in p⁢p𝑝𝑝ppitalic_p italic_p Collisions at s=7𝑠7\sqrt{s}=7square-root start_ARG italic_s end_ARG = 7 TeV”, JHEP 10 (2011) 132, 10.1007/JHEP10(2011)132, arXiv:1107.4789.
  92. CMS Collaboration, “Measurement of the inclusive and differential Higgs boson production cross sections in the decay mode to a pair of τ𝜏\tauitalic_τ leptons in pp collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV”, Phys. Rev. Lett. 128 (2022) 081805, 10.1103/PhysRevLett.128.081805, arXiv:2107.11486.
  93. CMS Collaboration, “Performance of electron reconstruction and selection with the CMS detector in proton-proton collisions at s=8𝑠8\sqrt{s}=8square-root start_ARG italic_s end_ARG = 8\TeV”, JINST 10 (2015) P06005, 10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.
  94. R. J. Barlow and C. Beeston, “Fitting using finite Monte Carlo samples”, Comput. Phys. Commun. 77 (1993) 219, 10.1016/0010-4655(93)90005-W.
  95. J. Butterworth et al., “PDF4LHC recommendations for LHC Run II”, J. Phys. G 43 (2016) 023001, 10.1088/0954-3899/43/2/023001, arXiv:1510.03865.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 4 tweets and received 14 likes.

Upgrade to Pro to view all of the tweets about this paper: