Stability of Hardy-Sobolev Inequality (2403.06594v1)
Abstract: Given $N\geq 3,$ we consider the critical Hardy-Sobolev equation $-\Delta u-\frac{\gamma}{|x|2}u=\frac{|u|{2*(s)-2}u}{|x|s}$ in $\mathbb{R}N\setminus {0},$ where $0<\gamma<\gamma_{H}:=\left(\frac{N-2}{2}\right)2,\,s\in (0,2)$ and $2*(s)=\frac{2(N-s)}{(N-2)}.$ We prove a stability estimate for the corresponding Hardy-Sobolev inequality in the spirit of Bianchi-Egnell (1991). Also, we obtain a Struwe-type decomposition (1984) for the corresponding Euler-Lagrange equation. Finally, we prove a quantitative bound for one bubble, namely $\operatorname{dist}(u,\mathcal{M})\lesssim \Gamma(u)$ in the spirit of Ciraolo-Figalli-Maggi (2017).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.