Bifurcation analysis of the Hardy-Sobolev equation (2009.04195v1)
Abstract: In this paper, we prove existence of multiple non-radial solutions to the Hardy-Sobolev equation $$\begin{cases} -\Delta u-\displaystyle\frac \gamma{|x|2}u=\displaystyle\frac{1}{|x|s}|u|{p_s-2}u & \text{ in } \mathbb{R}N\setminus{0},\ u\geq 0, & \end{cases}$$ where $N\geq 3$, $s\in[0,2)$, $p_s=\frac{2(N-s)}{N-2}$ and $\gamma\in (-\infty,\frac{(N-2)2} 4)$. We extend results of E.N. Dancer, F. Gladiali, M. Grossi, Proc. Roy. Soc. Edinburgh Sect. A 147 (2017) where only the case $s=0$ is considered. Moreover, thanks to monotonicity properties of the solutions, we separate two branches of non-radial solutions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.