Papers
Topics
Authors
Recent
Search
2000 character limit reached

Graph neural network for in-network placement of real-time metaverse tasks in next-generation network

Published 4 Mar 2024 in cs.NI and cs.DC | (2403.01780v2)

Abstract: This study addresses the challenge of real-time metaverse applications by proposing an in-network placement and task-offloading solution for delay-constrained computing tasks in next-generation networks. The metaverse, envisioned as a parallel virtual world, requires seamless real-time experiences across diverse applications. The study introduces a software-defined networking (SDN)-based architecture and employs graph neural network (GNN) techniques for intelligent and adaptive task allocation in in-network computing (INC). Considering time constraints and computing capabilities, the proposed model optimally decides whether to offload rendering tasks to INC nodes or edge server. Extensive experiments demonstrate the superior performance of the proposed GNN model, achieving 97% accuracy compared to 72% for multilayer perceptron (MLP) and 70% for decision trees (DTs). The study fills the research gap in in-network placement for real-time metaverse applications, offering insights into efficient rendering task handling.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. doi:https://doi.org/10.3390/smartcities5030040.
  2. doi:https://doi.org/10.1109/ACCESS.2023.3241628.
  3. doi:https://doi.org/10.1007/s10055-023-00783-2.
  4. doi:https://doi.org/10.1016/j.tourman.2023.104724.
  5. doi:https://doi.org/10.1109/COMST.2022.3221119.
  6. doi:https://doi.org/10.1007/978-3-031-24359-2.
  7. doi:https://doi.org/10.48550/arXiv.2205.02764.
  8. doi:https://doi.org/10.1109/SmartWorld-UIC-ATC-ScalCom-DigitalTwin-PriComp-Metaverse56740.2022.00332.
  9. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14507, doi:https://doi.org/10.1111/cgf.14507. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14507
  10. doi:10.1109/ACCESS.2023.3344817.
  11. doi:10.1109/TMC.2022.3150432.
  12. doi:https://doi.org/10.1016/j.sysarc.2021.102225. URL https://www.sciencedirect.com/science/article/pii/S1383762121001570
  13. doi:https://doi.org/10.1186/s13677-023-00477-9.
  14. doi:10.1109/MNET.011.2100060.
  15. doi:https://doi.org/10.1002/spe.2839.
  16. doi:https://doi.org/10.1109/COMST.2022.3213237.
  17. doi:https://doi.org/10.1109/MNET.021.2000318.
  18. doi:https://doi.org/10.1109/5GWF52925.2021.00091.
  19. doi:https://doi.org/10.1016/j.comnet.2021.108047.
  20. doi:https://doi.org/10.1016/j.comcom.2015.06.004.
  21. doi:https://doi.org/10.1109/IISWC53511.2021.00014.
  22. doi:https://doi.org/10.1016/j.comnet.2022.109432.
  23. doi:https://doi.org/10.1016/j.aiopen.2021.01.001.
  24. doi:https://doi.org/10.1155/2022/9261537.
  25. doi:https://doi.org/10.1016/j.matpr.2021.01.950.
  26. doi:10.1109/TMC.2020.2994232.
  27. doi:10.1109/TVT.2020.3008926.
  28. doi:10.1109/JIOT.2020.2984887.
  29. doi:10.1109/ACCESS.2020.2991734.
  30. doi:10.1109/TNET.2020.3013548.
  31. doi:10.1109/ICCCN.2018.8487419.
  32. doi:10.1109/TGCN.2021.3099804.
  33. doi:10.3390/electronics8101076. URL https://www.mdpi.com/2079-9292/8/10/1076
  34. doi:https://doi.org/10.1155/2021/9971705.
  35. doi:https://doi.org/10.1016/j.compeleceng.2023.108705. URL https://www.sciencedirect.com/science/article/pii/S0045790623001295
  36. doi:https://doi.org/10.1007/s10515-021-00318-6.
  37. doi:10.1109/ACCESS.2021.3099092.
  38. doi:10.3390/s23073682. URL https://www.mdpi.com/1424-8220/23/7/3682
  39. doi:https://doi.org/10.1007/s10922-020-09545-w. URL https://www.sciencedirect.com/science/article/pii/S2468502X22000158
  40. doi:10.1109/SOSE.2019.00043.
  41. doi:https://doi.org/10.3390/electronics12122601.
  42. doi:https://doi.org/10.1016/j.visinf.2022.03.002. URL https://www.sciencedirect.com/science/article/pii/S2468502X22000158
  43. doi:10.1109/JIOT.2021.3064225.
  44. doi:10.3390/electronics12122599. URL https://www.mdpi.com/2079-9292/12/12/2599
  45. doi:https://doi.org/10.1186/s13638-022-02170-y. URL https://www.mdpi.com/2079-9292/12/12/2599
  46. doi:10.1109/ACCESS.2018.2846236.
  47. doi:10.1109/SNPD.2017.8022707.
  48. doi:https://doi.org/10.1080/16843703.2017.1335492.
  49. doi:https://doi.org/10.1016/0377-2217(92)90077-M. URL https://www.sciencedirect.com/science/article/pii/037722179290077M
  50. doi:10.1109/ACCESS.2021.3140175.
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.