Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reliable Distributed Computing for Metaverse: A Hierarchical Game-Theoretic Approach (2111.10548v2)

Published 20 Nov 2021 in cs.NI

Abstract: The metaverse is regarded as a new wave of technological transformation that provides a virtual space for people to interact through digital avatars. To achieve immersive user experiences in the metaverse, real-time rendering is the key technology. However, computing-intensive tasks of real-time rendering from metaverse service providers cannot be processed efficiently on a single resource-limited mobile device. Alternatively, such mobile devices can offload the metaverse rendering tasks to other mobile devices by adopting the collaborative computing paradigm based on Coded Distributed Computing (CDC). Therefore, this paper introduces a hierarchical game-theoretic CDC framework for the metaverse services, especially for the vehicular metaverse. In the framework, idle resources from vehicles, acting as CDC workers, are aggregated to handle intensive computation tasks in the vehicular metaverse. Specifically, in the upper layer, a miner coalition formation game is formulated based on a reputation metric to select reliable workers. To guarantee the reliable management of reputation values, the reputation values calculated based on the subjective logical model are maintained in a blockchain database. In the lower layer, a Stackelberg game-based incentive mechanism is considered to attract reliable workers selected in the upper layer to participate in rendering tasks. The simulation results illustrate that the proposed framework is resistant to malicious workers. Compared with the best-effort worker selection scheme, the proposed scheme can improve the utility of metaverse service provider and the average profit of CDC workers.

Citations (83)

Summary

We haven't generated a summary for this paper yet.