Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Impression-CLIP: Contrastive Shape-Impression Embedding for Fonts (2402.16350v1)

Published 26 Feb 2024 in cs.CV

Abstract: Fonts convey different impressions to readers. These impressions often come from the font shapes. However, the correlation between fonts and their impression is weak and unstable because impressions are subjective. To capture such weak and unstable cross-modal correlation between font shapes and their impressions, we propose Impression-CLIP, which is a novel machine-learning model based on CLIP (Contrastive Language-Image Pre-training). By using the CLIP-based model, font image features and their impression features are pulled closer, and font image features and unrelated impression features are pushed apart. This procedure realizes co-embedding between font image and their impressions. In our experiment, we perform cross-modal retrieval between fonts and impressions through co-embedding. The results indicate that Impression-CLIP achieves better retrieval accuracy than the state-of-the-art method. Additionally, our model shows the robustness to noise and missing tags.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yugo Kubota (1 paper)
  2. Daichi Haraguchi (19 papers)
  3. Seiichi Uchida (85 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.