Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Shared Latent Space of Font Shapes and Their Noisy Impressions (2103.12347v3)

Published 23 Mar 2021 in cs.CV

Abstract: Styles of typefaces or fonts are often associated with specific impressions, such as heavy, contemporary, or elegant. This indicates that there are certain correlations between font shapes and their impressions. To understand the correlations, this paper realizes a shared latent space where a font and its impressions are embedded nearby. The difficulty is that the impression words attached to a font are often very noisy. This is because impression words are very subjective and diverse. More importantly, some impression words have no direct relevance to the font shapes and will disturb the realization of the shared latent space. We, therefore, use DeepSets for enhancing shape-relevant words and suppressing shape irrelevant words automatically while training the shared latent space. Quantitative and qualitative experimental results with a large-scale font-impression dataset demonstrate that the shared latent space by the proposed method describes the correlation appropriately, especially for the shape-relevant impression words.

Citations (4)

Summary

We haven't generated a summary for this paper yet.