Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Large Language Models for Natural Language Processing Tasks in Requirements Engineering: A Systematic Guideline (2402.13823v3)

Published 21 Feb 2024 in cs.SE

Abstract: LLMs are the cornerstone in automating Requirements Engineering (RE) tasks, underpinning recent advancements in the field. Their pre-trained comprehension of natural language is pivotal for effectively tailoring them to specific RE tasks. However, selecting an appropriate LLM from a myriad of existing architectures and fine-tuning it to address the intricacies of a given task poses a significant challenge for researchers and practitioners in the RE domain. Utilizing LLMs effectively for NLP problems in RE necessitates a dual understanding: firstly, of the inner workings of LLMs, and secondly, of a systematic approach to selecting and adapting LLMs for NLP4RE tasks. This chapter aims to furnish readers with essential knowledge about LLMs in its initial segment. Subsequently, it provides a comprehensive guideline tailored for students, researchers, and practitioners on harnessing LLMs to address their specific objectives. By offering insights into the workings of LLMs and furnishing a practical guide, this chapter contributes towards improving future research and applications leveraging LLMs for solving RE challenges.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Andreas Vogelsang (43 papers)
  2. Jannik Fischbach (34 papers)
Citations (3)