Sums of Weighted Lattice Points of Polytopes (2402.11328v1)
Abstract: We study the problem of counting lattice points of a polytope that are weighted by an Ehrhart quasi-polynomial of a family of parametric polytopes. As applications one can compute integrals and maximum values of such quasi-polynomials, as well as obtain new identities in representation theory. These topics have been of great interest to Mich`ele Vergne since the late 1980's. Our new contribution is a result that transforms weighted sums into unweighted sums, even when the weights are very general quasipolynomials. In some cases it leads to faster integration over a polytope. We can create new algebraic identities and conjectures in algebraic combinatorics and number theory.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.