Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 79 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 85 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Kimi K2 186 tok/s Pro
2000 character limit reached

Weighted Ehrhart Theory: Extending Stanley's nonnegativity theorem (2303.09614v2)

Published 16 Mar 2023 in math.CO and math.MG

Abstract: We generalize R. P. Stanley's celebrated theorem that the $h\ast$-polynomial of the Ehrhart series of a rational polytope has nonnegative coefficients and is monotone under containment of polytopes. We show that these results continue to hold for weighted Ehrhart series where lattice points are counted with polynomial weights, as long as the weights are homogeneous polynomials decomposable as sums of products of linear forms that are nonnegative on the polytope. We also show nonnegativity of the $h\ast$-polynomial as a real-valued function for a larger family of weights. We then target the case when the weight function is the square of a single (arbitrary) linear form. We show stronger results for two-dimensional convex lattice polygons and give concrete examples showing tightness of the hypotheses. As an application, we construct a counterexample to a conjecture by Berg, Jochemko, and Silverstein on Ehrhart tensor polynomials.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com