Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How Trustworthy are Open-Source LLMs? An Assessment under Malicious Demonstrations Shows their Vulnerabilities (2311.09447v2)

Published 15 Nov 2023 in cs.CL and cs.AI

Abstract: The rapid progress in open-source LLMs is significantly driving AI development forward. However, there is still a limited understanding of their trustworthiness. Deploying these models at scale without sufficient trustworthiness can pose significant risks, highlighting the need to uncover these issues promptly. In this work, we conduct an adversarial assessment of open-source LLMs on trustworthiness, scrutinizing them across eight different aspects including toxicity, stereotypes, ethics, hallucination, fairness, sycophancy, privacy, and robustness against adversarial demonstrations. We propose advCoU, an extended Chain of Utterances-based (CoU) prompting strategy by incorporating carefully crafted malicious demonstrations for trustworthiness attack. Our extensive experiments encompass recent and representative series of open-source LLMs, including Vicuna, MPT, Falcon, Mistral, and Llama 2. The empirical outcomes underscore the efficacy of our attack strategy across diverse aspects. More interestingly, our result analysis reveals that models with superior performance in general NLP tasks do not always have greater trustworthiness; in fact, larger models can be more vulnerable to attacks. Additionally, models that have undergone instruction tuning, focusing on instruction following, tend to be more susceptible, although fine-tuning LLMs for safety alignment proves effective in mitigating adversarial trustworthiness attacks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Lingbo Mo (11 papers)
  2. Boshi Wang (16 papers)
  3. Muhao Chen (159 papers)
  4. Huan Sun (88 papers)
Citations (23)
X Twitter Logo Streamline Icon: https://streamlinehq.com