Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data (2311.09115v3)

Published 15 Nov 2023 in cs.LG and cs.AI

Abstract: Technological advances in medical data collection, such as high-throughput genomic sequencing and digital high-resolution histopathology, have contributed to the rising requirement for multimodal biomedical modelling, specifically for image, tabular and graph data. Most multimodal deep learning approaches use modality-specific architectures that are often trained separately and cannot capture the crucial cross-modal information that motivates the integration of different data sources. This paper presents the Hybrid Early-fusion Attention Learning Network (HEALNet): a flexible multimodal fusion architecture, which a) preserves modality-specific structural information, b) captures the cross-modal interactions and structural information in a shared latent space, c) can effectively handle missing modalities during training and inference, and d) enables intuitive model inspection by learning on the raw data input instead of opaque embeddings. We conduct multimodal survival analysis on Whole Slide Images and Multi-omic data on four cancer datasets from The Cancer Genome Atlas (TCGA). HEALNet achieves state-of-the-art performance compared to other end-to-end trained fusion models, substantially improving over unimodal and multimodal baselines whilst being robust in scenarios with missing modalities.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Konstantin Hemker (7 papers)
  2. Nikola Simidjievski (33 papers)
  3. Mateja Jamnik (57 papers)
Citations (2)
Github Logo Streamline Icon: https://streamlinehq.com