Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

ME-Mamba: Multi-Expert Mamba with Efficient Knowledge Capture and Fusion for Multimodal Survival Analysis (2509.16900v1)

Published 21 Sep 2025 in cs.CV and cs.AI

Abstract: Survival analysis using whole-slide images (WSIs) is crucial in cancer research. Despite significant successes, pathology images typically only provide slide-level labels, which hinders the learning of discriminative representations from gigapixel WSIs. With the rapid advancement of high-throughput sequencing technologies, multimodal survival analysis integrating pathology images and genomics data has emerged as a promising approach. We propose a Multi-Expert Mamba (ME-Mamba) system that captures discriminative pathological and genomic features while enabling efficient integration of both modalities. This approach achieves complementary information fusion without losing critical information from individual modalities, thereby facilitating accurate cancer survival analysis. Specifically, we first introduce a Pathology Expert and a Genomics Expert to process unimodal data separately. Both experts are designed with Mamba architectures that incorporate conventional scanning and attention-based scanning mechanisms, allowing them to extract discriminative features from long instance sequences containing substantial redundant or irrelevant information. Second, we design a Synergistic Expert responsible for modality fusion. It explicitly learns token-level local correspondences between the two modalities via Optimal Transport, and implicitly enhances distribution consistency through a global cross-modal fusion loss based on Maximum Mean Discrepancy. The fused feature representations are then passed to a mamba backbone for further integration. Through the collaboration of the Pathology Expert, Genomics Expert, and Synergistic Expert, our method achieves stable and accurate survival analysis with relatively low computational complexity. Extensive experimental results on five datasets in The Cancer Genome Atlas (TCGA) demonstrate our state-of-the-art performance.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.