Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Imbalanced Regression via Hierarchical Classification Adjustment (2310.17154v1)

Published 26 Oct 2023 in cs.CV

Abstract: Regression tasks in computer vision, such as age estimation or counting, are often formulated into classification by quantizing the target space into classes. Yet real-world data is often imbalanced -- the majority of training samples lie in a head range of target values, while a minority of samples span a usually larger tail range. By selecting the class quantization, one can adjust imbalanced regression targets into balanced classification outputs, though there are trade-offs in balancing classification accuracy and quantization error. To improve regression performance over the entire range of data, we propose to construct hierarchical classifiers for solving imbalanced regression tasks. The fine-grained classifiers limit the quantization error while being modulated by the coarse predictions to ensure high accuracy. Standard hierarchical classification approaches, however, when applied to the regression problem, fail to ensure that predicted ranges remain consistent across the hierarchy. As such, we propose a range-preserving distillation process that can effectively learn a single classifier from the set of hierarchical classifiers. Our novel hierarchical classification adjustment (HCA) for imbalanced regression shows superior results on three diverse tasks: age estimation, crowd counting and depth estimation. We will release the source code upon acceptance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.