Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Balanced MSE for Imbalanced Visual Regression (2203.16427v1)

Published 30 Mar 2022 in cs.CV

Abstract: Data imbalance exists ubiquitously in real-world visual regressions, e.g., age estimation and pose estimation, hurting the model's generalizability and fairness. Thus, imbalanced regression gains increasing research attention recently. Compared to imbalanced classification, imbalanced regression focuses on continuous labels, which can be boundless and high-dimensional and hence more challenging. In this work, we identify that the widely used Mean Square Error (MSE) loss function can be ineffective in imbalanced regression. We revisit MSE from a statistical view and propose a novel loss function, Balanced MSE, to accommodate the imbalanced training label distribution. We further design multiple implementations of Balanced MSE to tackle different real-world scenarios, particularly including the one that requires no prior knowledge about the training label distribution. Moreover, to the best of our knowledge, Balanced MSE is the first general solution to high-dimensional imbalanced regression. Extensive experiments on both synthetic and three real-world benchmarks demonstrate the effectiveness of Balanced MSE.

Citations (86)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com