Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LLM4DV: Using Large Language Models for Hardware Test Stimuli Generation (2310.04535v2)

Published 6 Oct 2023 in cs.LG and cs.AR

Abstract: Hardware design verification (DV) is a process that checks the functional equivalence of a hardware design against its specifications, improving hardware reliability and robustness. A key task in the DV process is the test stimuli generation, which creates a set of conditions or inputs for testing. These test conditions are often complex and specific to the given hardware design, requiring substantial human engineering effort to optimize. We seek a solution of automated and efficient testing for arbitrary hardware designs that takes advantage of LLMs. LLMs have already shown promising results for improving hardware design automation, but remain under-explored for hardware DV. In this paper, we propose an open-source benchmarking framework named LLM4DV that efficiently orchestrates LLMs for automated hardware test stimuli generation. Our analysis evaluates six different LLMs involving six prompting improvements over eight hardware designs and provides insight for future work on LLMs development for efficient automated DV.

Citations (15)

Summary

We haven't generated a summary for this paper yet.