Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rome was Not Built in a Single Step: Hierarchical Prompting for LLM-based Chip Design (2407.18276v3)

Published 23 Jul 2024 in cs.AR and cs.AI

Abstract: LLMs are effective in computer hardware synthesis via hardware description language (HDL) generation. However, LLM-assisted approaches for HDL generation struggle when handling complex tasks. We introduce a suite of hierarchical prompting techniques which facilitate efficient stepwise design methods, and develop a generalizable automation pipeline for the process. To evaluate these techniques, we present a benchmark set of hardware designs which have solutions with or without architectural hierarchy. Using these benchmarks, we compare various open-source and proprietary LLMs, including our own fine-tuned Code Llama-Verilog model. Our hierarchical methods automatically produce successful designs for complex hardware modules that standard flat prompting methods cannot achieve, allowing smaller open-source LLMs to compete with large proprietary models. Hierarchical prompting reduces HDL generation time and yields savings on LLM costs. Our experiments detail which LLMs are capable of which applications, and how to apply hierarchical methods in various modes. We explore case studies of generating complex cores using automatic scripted hierarchical prompts, including the first-ever LLM-designed processor with no human feedback. Tools for the Recurrent Optimization via Machine Editing (ROME) method can be found at https://github.com/ajn313/ROME-LLM

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. AI@Meta. 2024. Llama 3 Model Card. (2024). https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
  2. Chip-Chat: Challenges and Opportunities in Conversational Hardware Design. arXiv preprint arXiv:2305.13243 (2023).
  3. Hugh W. Buckingham and Sarah S. Christman. 2008. Chapter 12 - Disorders of Phonetics and Phonology. In Handbook of the Neuroscience of Language, Brigitte Stemmer and Harry A. Whitaker (Eds.). Elsevier, San Diego, 127–136. https://doi.org/10.1016/B978-0-08-045352-1.00012-4
  4. Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374 (2021).
  5. Pushing the Limits of Machine Design: Automated CPU Design with AI. arXiv preprint arXiv:2306.12456 (2023).
  6. Codebert: A pre-trained model for programming and natural languages. arXiv preprint arXiv:2002.08155 (2020).
  7. Incoder: A generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999 (2022).
  8. Self-planning code generation with large language model. arXiv preprint arXiv:2303.06689 (2023).
  9. Exploring and Evaluating Hallucinations in LLM-Powered Code Generation. arXiv:2404.00971 [cs.SE]
  10. VerilogEval: Evaluating Large Language Models for Verilog Code Generation. arXiv:2309.07544 [cs.LG]
  11. RTLCoder: Outperforming GPT-3.5 in Design RTL Generation with Our Open-Source Dataset and Lightweight Solution. arXiv:2312.08617 [cs.PL]
  12. RTLLM: An Open-Source Benchmark for Design RTL Generation with Large Language Model. arXiv:2308.05345 [cs.LG]
  13. James Manyika. 2023. An overview of Bard: an early experiment with generative AI. Technical Report. Technical report, Google AI.
  14. Codegen: An open large language model for code with multi-turn program synthesis. arXiv preprint arXiv:2203.13474 (2022).
  15. OpenAI. 2023. GPT-4 Technical Report. http://arxiv.org/abs/2303.08774. https://doi.org/10.48550/arXiv.2303.08774 arXiv:2303.08774 [cs].
  16. Code Llama: Open Foundation Models for Code. arXiv preprint arXiv:2308.12950 (2023).
  17. Benchmarking Large Language Models for Automated Verilog RTL Code Generation. In 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 1–6.
  18. VeriGen: A Large Language Model for Verilog Code Generation. arXiv preprint arXiv:2308.00708 (2023).
  19. AutoChip: Automating HDL Generation Using LLM Feedback. arXiv:2311.04887 [cs.PL]
  20. Llama 2: Open Foundation and Fine-Tuned Chat Models. arXiv preprint arXiv:2307.09288 (2023).
  21. Codet5: Identifier-aware unified pre-trained encoder-decoder models for code understanding and generation. arXiv preprint arXiv:2109.00859 (2021).
  22. Chain-of-Thought Prompting Elicits Reasoning in Large Language Models. arXiv:2201.11903 [cs.CL]
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Andre Nakkab (4 papers)
  2. Sai Qian Zhang (33 papers)
  3. Ramesh Karri (92 papers)
  4. Siddharth Garg (99 papers)
Citations (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com