Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A degenerate Kirchhoff-type problem involving variable $s(\cdot)$-order fractional $p(\cdot)$-Laplacian with weights (2308.08007v1)

Published 15 Aug 2023 in math.AP

Abstract: This paper deals with a class of nonlocal variable $s(.)$-order fractional $p(.)$-Kirchhoff type equations: \begin{eqnarray*} \left{ \begin{array}{ll} \mathcal{K}\left(\int_{\mathbb{R}{2N}}\frac{1}{p(x,y)}\frac{|\varphi(x)-\varphi(y)|{p(x,y)}}{|x-y|{N+s(x,y){p(x,y)}}} \,dx\,dy\right)(-\Delta){s(\cdot)}_{p(\cdot)}\varphi(x) =f(x,\varphi) \quad \mbox{in }\Omega, \ \varphi=0 \quad \mbox{on }\mathbb{R}N\backslash\Omega. \end{array} \right. \end{eqnarray*} Under some suitable conditions on the functions $p,s, \mathcal{K}$ and $f$, the existence and multiplicity of nontrivial solutions for the above problem are obtained. Our results cover the degenerate case in the $p(\cdot)$ fractional setting.

Citations (3)

Summary

We haven't generated a summary for this paper yet.