Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A fractional Kirchhoff problem involving a singular term and a critical nonlinearity (1703.07861v1)

Published 22 Mar 2017 in math.AP

Abstract: In this paper we consider the following critical nonlocal problem $$ \left{\begin{array}{ll} M\left(\displaystyle\iint_{\mathbb{R}{2N}}\frac{|u(x)-u(y)|2}{|x-y|{N+2s}}dxdy\right)(-\Delta)s u = \displaystyle\frac{\lambda}{u\gamma}+u{2*_s-1}&\quad\mbox{in } \Omega,\ u>0&\quad\mbox{in } \Omega,\ u=0&\quad\mbox{in } \mathbb{R}N\setminus\Omega, \end{array}\right. $$ where $\Omega$ is an open bounded subset of $\mathbb RN$ with continuous boundary, dimension $N>2s$ with parameter $s\in (0,1)$, $2*_s=2N/(N-2s)$ is the fractional critical Sobolev exponent, $\lambda>0$ is a real parameter, exponent $\gamma\in(0,1)$, $M$ models a Kirchhoff type coefficient, while $(-\Delta)s$ is the fractional Laplace operator. In particular, we cover the delicate degenerate case, that is when the Kirchhoff function $M$ is zero at zero. By combining variational methods with an appropriate truncation argument, we provide the existence of two solutions.

Summary

We haven't generated a summary for this paper yet.