Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Identifiability in Functional Connectivity May Unintentionally Inflate Prediction Results (2308.01451v1)

Published 2 Aug 2023 in q-bio.NC and q-bio.QM

Abstract: Functional magnetic resonance (fMRI) is an invaluable tool in studying cognitive processes in vivo. Many recent studies use functional connectivity (FC), partial correlation connectivity (PC), or fMRI-derived brain networks to predict phenotypes with results that sometimes cannot be replicated. At the same time, FC can be used to identify the same subject from different scans with great accuracy. In this paper, we show a method by which one can unknowingly inflate classification results from 61% accuracy to 86% accuracy by treating longitudinal or contemporaneous scans of the same subject as independent data points. Using the UK Biobank dataset, we find one can achieve the same level of variance explained with 50 training subjects by exploiting identifiability as with 10,000 training subjects without double-dipping. We replicate this effect in four different datasets: the UK Biobank (UKB), the Philadelphia Neurodevelopmental Cohort (PNC), the Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP), and an OpenNeuro Fibromyalgia dataset (Fibro). The unintentional improvement ranges between 7% and 25% in the four datasets. Additionally, we find that by using dynamic functional connectivity (dFC), one can apply this method even when one is limited to a single scan per subject. One major problem is that features such as ROIs or connectivities that are reported alongside inflated results may confuse future work. This article hopes to shed light on how even minor pipeline anomalies may lead to unexpectedly superb results.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.