Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 96 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Kimi K2 189 tok/s Pro
2000 character limit reached

Reliability and predictability of phenotype information from functional connectivity in large imaging datasets (2405.00255v1)

Published 1 May 2024 in q-bio.NC

Abstract: One of the central objectives of contemporary neuroimaging research is to create predictive models that can disentangle the connection between patterns of functional connectivity across the entire brain and various behavioral traits. Previous studies have shown that models trained to predict behavioral features from the individual's functional connectivity have modest to poor performance. In this study, we trained models that predict observable individual traits (phenotypes) and their corresponding singular value decomposition (SVD) representations - herein referred to as latent phenotypes from resting state functional connectivity. For this task, we predicted phenotypes in two large neuroimaging datasets: the Human Connectome Project (HCP) and the Philadelphia Neurodevelopmental Cohort (PNC). We illustrate the importance of regressing out confounds, which could significantly influence phenotype prediction. Our findings reveal that both phenotypes and their corresponding latent phenotypes yield similar predictive performance. Interestingly, only the first five latent phenotypes were reliably identified, and using just these reliable phenotypes for predicting phenotypes yielded a similar performance to using all latent phenotypes. This suggests that the predictable information is present in the first latent phenotypes, allowing the remainder to be filtered out without any harm in performance. This study sheds light on the intricate relationship between functional connectivity and the predictability and reliability of phenotypic information, with potential implications for enhancing predictive modeling in the realm of neuroimaging research.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube