Papers
Topics
Authors
Recent
2000 character limit reached

One Quarter Each (on Average) Ensures Proportionality

Published 10 Jul 2023 in cs.GT | (2307.04411v1)

Abstract: We consider the problem of fair allocation of $m$ indivisible items to a group of $n$ agents with subsidy (money). Our work mainly focuses on the allocation of chores but most of our results extend to the allocation of goods as well. We consider the case when agents have (general) additive cost functions. Assuming that the maximum cost of an item to an agent can be compensated by one dollar, we show that a total of $n/4$ dollars of subsidy suffices to ensure a proportional allocation. Moreover, we show that $n/4$ is tight in the sense that there exists an instance with $n$ agents for which every proportional allocation requires a total subsidy of at least $n/4$. We also consider the weighted case and show that a total subsidy of $(n-1)/2$ suffices to ensure a weighted proportional allocation.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.