Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multilingual Neural Machine Translation System for Indic to Indic Languages (2306.12693v1)

Published 22 Jun 2023 in cs.CL

Abstract: This paper gives an Indic-to-Indic (IL-IL) MNMT baseline model for 11 ILs implemented on the Samanantar corpus and analyzed on the Flores-200 corpus. All the models are evaluated using the BLEU score. In addition, the languages are classified under three groups namely East Indo- Aryan (EI), Dravidian (DR), and West Indo-Aryan (WI). The effect of language relatedness on MNMT model efficiency is studied. Owing to the presence of large corpora from English (EN) to ILs, MNMT IL-IL models using EN as a pivot are also built and examined. To achieve this, English- Indic (EN-IL) models are also developed, with and without the usage of related languages. Results reveal that using related languages is beneficial for the WI group only, while it is detrimental for the EI group and shows an inconclusive effect on the DR group, but it is useful for EN-IL models. Thus, related language groups are used to develop pivot MNMT models. Furthermore, the IL corpora are transliterated from the corresponding scripts to a modified ITRANS script, and the best MNMT models from the previous approaches are built on the transliterated corpus. It is observed that the usage of pivot models greatly improves MNMT baselines with AS-TA achieving the minimum BLEU score and PA-HI achieving the maximum score. Among languages, AS, ML, and TA achieve the lowest BLEU score, whereas HI, PA, and GU perform the best. Transliteration also helps the models with few exceptions. The best increment of scores is observed in ML, TA, and BN and the worst average increment is observed in KN, HI, and PA, across all languages. The best model obtained is the PA-HI language pair trained on PAWI transliterated corpus which gives 24.29 BLEU.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.