Functional Ghobber-Jaming Uncertainty Principle (2306.01014v1)
Abstract: Let $({f_j}{j=1}n, {\tau_j}{j=1}n)$ and $({g_k}{k=1}n, {\omega_k}{k=1}n)$ be two p-orthonormal bases for a finite dimensional Banach space $\mathcal{X}$. Let $M,N\subseteq {1, \dots, n}$ be such that \begin{align*} o(M)\frac{1}{q}o(N)\frac{1}{p}< \frac{1}{\displaystyle \max_{1\leq j,k\leq n}|g_k(\tau_j) |}, \end{align*} where $q$ is the conjugate index of $p$. Then for all $x \in \mathcal{X}$, we show that \begin{align}\label{FGJU} (1) \quad \quad \quad \quad |x|\leq \left(1+\frac{1}{1-o(M)\frac{1}{q}o(N)\frac{1}{p}\displaystyle\max_{1\leq j,k\leq n}|g_k(\tau_j)|}\right)\left[\left(\sum_{j\in Mc}|f_j(x)|p\right)\frac{1}{p}+\left(\sum_{k\in Nc}|g_k(x) |p\right)\frac{1}{p}\right]. \end{align} We call Inequality (1) as \textbf{Functional Ghobber-Jaming Uncertainty Principle}. Inequality (1) improves the uncertainty principle obtained by Ghobber and Jaming \textit{[Linear Algebra Appl., 2011]}.