Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Functional Kuppinger-Durisi-Bölcskei Uncertainty Principle (2402.04255v1)

Published 1 Jan 2024 in math.FA, cs.IT, and math.IT

Abstract: Let $\mathcal{X}$ be a Banach space. Let ${\tau_j}{j=1}n, {\omega_k}{k=1}m\subseteq \mathcal{X}$ and ${f_j}{j=1}n$, ${g_k}{k=1}m\subseteq \mathcal{X}*$ satisfy $ |f_j(\tau_j)|\geq 1$ for all $ 1\leq j \leq n$, $|g_k(\omega_k)|\geq 1 $ for all $1\leq k \leq m$. If $x \in \mathcal{X}\setminus {0}$ is such that $x=\theta_\tau\theta_f x=\theta_\omega\theta_g x$, then we show that \begin{align}\label{FKDB} (1) \quad\quad\quad\quad |\theta_fx|0|\theta_gx|_0\geq \frac{\bigg[1-(|\theta_fx|_0-1)\max\limits{1\leq j,r \leq n,j\neq r}|f_j(\tau_r)|\bigg]+\bigg[1-(|\theta_g x|0-1)\max\limits{1\leq k,s \leq m,k\neq s}|g_k(\omega_s)|\bigg]+}{\left(\displaystyle\max_{1\leq j \leq n, 1\leq k \leq m}|f_j(\omega_k)|\right)\left(\displaystyle\max_{1\leq j \leq n, 1\leq k \leq m}|g_k(\tau_j)|\right)}. \end{align} We call Inequality (1) as \textbf{Functional Kuppinger-Durisi-B\"{o}lcskei Uncertainty Principle}. Inequality (1) improves the uncertainty principle obtained by Kuppinger, Durisi and B\"{o}lcskei \textit{[IEEE Trans. Inform. Theory (2012)]} (which improved the Donoho-Stark-Elad-Bruckstein uncertainty principle \textit{[SIAM J. Appl. Math. (1989), IEEE Trans. Inform. Theory (2002)]}). We also derive functional form of the uncertainity principle obtained by Studer, Kuppinger, Pope and B\"{o}lcskei \textit{[EEE Trans. Inform. Theory (2012)]}.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. The uncertainty principle over finite fields. Discrete Math., 345(1):Paper No. 112670, 7, 2022.
  2. On ideals in group algebras: an uncertainty principle and the Schur product. Forum Math., 34(5):1345–1354, 2022.
  3. Uncertainty principles and signal recovery. SIAM J. Appl. Math., 49(3):906–931, 1989.
  4. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory, 48(9):2558–2567, 2002.
  5. Good cyclic codes and the uncertainty principle. Enseign. Math., 63(3-4):305–332, 2017.
  6. The shift bound for abelian codes and generalizations of the Donoho-Stark uncertainty principle. IEEE Trans. Inform. Theory, 65(8):4673–4682, 2019.
  7. An improved uncertainty principle for functions with symmetry. J. Algebra, 586:899–934, 2021.
  8. Inequalities for finite group permutation modules. Trans. Amer. Math. Soc., 357(10):4017–4042, 2005.
  9. K. Mahesh Krishna. Functional continuous uncertainty principle. arXiv:2308.00312v1 [math.FA], 1 August, 2023.
  10. K. Mahesh Krishna. Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani uncertainty principle. arXiv:2304. 03324v1 [math.FA], 5 April, 2023.
  11. Towards characterizations of approximate Schauder frame and its duals for Banach spaces. J. Pseudo-Differ. Oper. Appl., 12(1):Paper No. 9, 13, 2021.
  12. Uncertainty relations and sparse signal recovery for pairs of general signal sets. IEEE Trans. Inform. Theory, 58(1):263–277, 2012.
  13. Roy Meshulam. An uncertainty inequality for groups of order p⁢q𝑝𝑞pqitalic_p italic_q. European J. Combin., 13(5):401–407, 1992.
  14. Roy Meshulam. An uncertainty inequality for finite abelian groups. European J. Combin., 27(1):63–67, 2006.
  15. The uncertainty principle and a generalization of a theorem of Tao. Linear Algebra Appl., 437(1):214–220, 2012.
  16. Refined support and entropic uncertainty inequalities. IEEE Trans. Inform. Theory, 59(7):4272–4279, 2013.
  17. Recovery of sparsely corrupted signals. IEEE Trans. Inform. Theory, 58(5):3115–3130, 2012.
  18. Terence Tao. An uncertainty principle for cyclic groups of prime order. Math. Res. Lett., 12(1):121–127, 2005.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com