Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principles (2312.00366v1)

Published 1 Dec 2023 in math.FA, cs.IT, math-ph, math.IT, and math.MP

Abstract: Let $(\Omega, \mu)$, $(\Delta, \nu)$ be measure spaces and $p=1$ or $p=\infty$. Let $({f_\alpha}{\alpha\in \Omega}, {\tau\alpha}{\alpha\in \Omega})$ and $({g\beta}{\beta\in \Delta}, {\omega\beta}{\beta\in \Delta})$ be unbounded continuous p-Schauder frames for a Banach space $\mathcal{X}$. Then for every $x \in ( \mathcal{D}(\theta_f) \cap\mathcal{D}(\theta_g))\setminus{0}$, we show that \begin{align}\label{UB} (1) \quad \quad \quad \quad \mu(\operatorname{supp}(\theta_f x))\nu(\operatorname{supp}(\theta_g x)) \geq \frac{1}{\left(\displaystyle\sup{\alpha \in \Omega, \beta \in \Delta}|f_\alpha(\omega_\beta)|\right)\left(\displaystyle\sup_{\alpha \in \Omega , \beta \in \Delta}|g_\beta(\tau_\alpha)|\right)}, \end{align} where \begin{align*} &\theta_f:\mathcal{D}(\theta_f) \ni x \mapsto \theta_fx \in \mathcal{L}p(\Omega, \mu); \quad \theta_fx: \Omega \ni \alpha \mapsto (\theta_fx) (\alpha):= f_\alpha (x) \in \mathbb{K},\ &\theta_g: \mathcal{D}(\theta_g) \ni x \mapsto \theta_gx \in \mathcal{L}p(\Delta, \nu); \quad \theta_gx: \Delta \ni \beta \mapsto (\theta_gx) (\beta):= g_\beta (x) \in \mathbb{K}. \end{align*} We call Inequality (1) as \textbf{Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torr\'{e}sani Uncertainty Principle}. Along with recent \textbf{Functional Continuous Uncertainty Principle} [arXiv:2308.00312], Inequality (1) also improves Ricaud-Torr\'{e}sani uncertainty principle [IEEE Trans. Inform. Theory, 2013]. In particular, it improves Elad-Bruckstein uncertainty principle [IEEE Trans. Inform. Theory, 2002] and Donoho-Stark uncertainty principle [SIAM J. Appl. Math., 1989].

Definition Search Book Streamline Icon: https://streamlinehq.com
References (10)
  1. J.-P. Antoine and P. Balazs. Frames, semi-frames, and Hilbert scales. Numer. Funct. Anal. Optim., 33(7-9):736–769, 2012.
  2. Frames and semi-frames. J. Phys. A, 44(20):205201, 25, 2011.
  3. Ole Christensen. Frames and pseudo-inverses. J. Math. Anal. Appl., 195(2):401–414, 1995.
  4. Uncertainty principles and signal recovery. SIAM J. Appl. Math., 49(3):906–931, 1989.
  5. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory, 48(9):2558–2567, 2002.
  6. K. Mahesh Krishna. Endpoint functional continuous uncertainty principles. https://doi.org/10.5281/zenodo.10121545, 14 November, 2023.
  7. K. Mahesh Krishna. Functional continuous uncertainty principle. arXiv:2308.00312v1 [math.FA] 1 August, 2023.
  8. K. Mahesh Krishna. Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani uncertainty principle. arXiv: 2304. 03324v1, [math.FA] 5 April, 2023.
  9. Parseval p𝑝pitalic_p-frames and the Feichtinger conjecture. J. Math. Anal. Appl., 424(1):248–259, 2015.
  10. Refined support and entropic uncertainty inequalities. IEEE Trans. Inform. Theory, 59(7):4272–4279, 2013.
Citations (1)

Summary

We haven't generated a summary for this paper yet.