Unexpected Uncertainty Principle for Disc Banach Spaces (2404.00910v1)
Abstract: Let $({f_n}{n=1}\infty, {\tau_n}{n=1}\infty)$ and $({g_n}{n=1}\infty, {\omega_n}{n=1}\infty)$ be unbounded continuous p-Schauder frames ($0<p<1$) for a disc Banach space $\mathcal{X}$. Then for every $x \in ( \mathcal{D}(\theta_f) \cap\mathcal{D}(\theta_g))\setminus{0}$, we show that \begin{align}\label{UB} (1) \quad \quad \quad \quad |\theta_f x|0|\theta_g x|_0 \geq \frac{1}{\left(\displaystyle\sup{n,m \in \mathbb{N} }|f_n(\omega_m)|\right)p\left(\displaystyle\sup_{n, m \in \mathbb{N}}|g_m(\tau_n)|\right)p}, \end{align} where \begin{align*} & \theta_f: \mathcal{D}(\theta_f) \ni x \mapsto \theta_fx := {f_n(x)}{n=1}\infty\in \ellp(\mathbb{N}), \quad \theta_g: \mathcal{D}(\theta_g) \ni x \mapsto \theta_gx := {g_n(x)}{n=1}\infty\in \ellp(\mathbb{N}). \end{align*} Inequality (1) is unexpectedly different from both bounded uncertainty principle arXiv:2308.00312v1 and unbounded uncertainty principle arXiv:2312.00366v1 for Banach spaces.
- J.-P. Antoine and P. Balazs. Frames, semi-frames, and Hilbert scales. Numer. Funct. Anal. Optim., 33(7-9):736–769, 2012.
- Lower semi-frames, frames, and metric operators. Mediterr. J. Math., 18(1):Paper No. 11, 20, 2021.
- Reproducing pairs of measurable functions. Acta Appl. Math., 150:81–101, 2017.
- Frames and semi-frames. J. Phys. A, 44(20):205201, 25, 2011.
- Beyond frames: semi-frames and reproducing pairs. In Mathematical structures and applications, STEAM-H: Sci. Technol. Eng. Agric. Math. Health, pages 21–59. Springer, Cham, 2018.
- Finite normalized tight frames. Adv. Comput. Math., 18(2-4):357–385, 2003.
- Ole Christensen. Frames and pseudo-inverses. J. Math. Anal. Appl., 195(2):401–414, 1995.
- Uncertainty principles and signal recovery. SIAM J. Appl. Math., 49(3):906–931, 1989.
- A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory, 48(9):2558–2567, 2002.
- D. J. H. Garling. Inequalities: a journey into linear analysis. Cambridge University Press, Cambridge, 2007.
- Equations and inequalities, volume 1 of CMS Books in Mathematics. Springer-Verlag, New York, 2000.
- K. Mahesh Krishna. Endpoint functional continuous uncertainty principles. SSRN Preprints:10.2139/ssrn.4629819, 11 November, 2023.
- K. Mahesh Krishna. Functional continuous uncertainty principle. arXiv:2308.00312v1 [math.FA], 1 August, 2023.
- K. Mahesh Krishna. Functional Donoho-Stark approximate support uncertainty principle. arXiv:2307.01215v1, [math.FA], 1 July, 2023.
- K. Mahesh Krishna. Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani uncertainty principle. arXiv:2304. 03324v1, [math.FA], 5 April, 2023.
- K. Mahesh Krishna. Unbounded Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani uncertainty principles. arXiv:2312. 00366v1, [math.FA], 1 December, 2023.
- Towards characterizations of approximate Schauder frame and its duals for Banach spaces. J. Pseudo-Differ. Oper. Appl., 12(1):Paper No. 9, 13, 2021.
- Parseval p𝑝pitalic_p-frames and the Feichtinger conjecture. J. Math. Anal. Appl., 424(1):248–259, 2015.
- Refined support and entropic uncertainty inequalities. IEEE Trans. Inform. Theory, 59(7):4272–4279, 2013.
- Terence Tao. An uncertainty principle for cyclic groups of prime order. Math. Res. Lett., 12(1):121–127, 2005.