Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detection and Estimation of Structural Breaks in High-Dimensional Functional Time Series (2304.07003v1)

Published 14 Apr 2023 in stat.ME, econ.EM, math.ST, stat.ML, and stat.TH

Abstract: In this paper, we consider detecting and estimating breaks in heterogeneous mean functions of high-dimensional functional time series which are allowed to be cross-sectionally correlated and temporally dependent. A new test statistic combining the functional CUSUM statistic and power enhancement component is proposed with asymptotic null distribution theory comparable to the conventional CUSUM theory derived for a single functional time series. In particular, the extra power enhancement component enlarges the region where the proposed test has power, and results in stable power performance when breaks are sparse in the alternative hypothesis. Furthermore, we impose a latent group structure on the subjects with heterogeneous break points and introduce an easy-to-implement clustering algorithm with an information criterion to consistently estimate the unknown group number and membership. The estimated group structure can subsequently improve the convergence property of the post-clustering break point estimate. Monte-Carlo simulation studies and empirical applications show that the proposed estimation and testing techniques have satisfactory performance in finite samples.

Citations (3)

Summary

We haven't generated a summary for this paper yet.