Papers
Topics
Authors
Recent
2000 character limit reached

Oracle Efficient Estimation of Structural Breaks in Cointegrating Regressions

Published 22 Jan 2020 in econ.EM and stat.ML | (2001.07949v4)

Abstract: In this paper, we propose an adaptive group lasso procedure to efficiently estimate structural breaks in cointegrating regressions. It is well-known that the group lasso estimator is not simultaneously estimation consistent and model selection consistent in structural break settings. Hence, we use a first step group lasso estimation of a diverging number of breakpoint candidates to produce weights for a second adaptive group lasso estimation. We prove that parameter changes are estimated consistently by group lasso and show that the number of estimated breaks is greater than the true number but still sufficiently close to it. Then, we use these results and prove that the adaptive group lasso has oracle properties if weights are obtained from our first step estimation. Simulation results show that the proposed estimator delivers the expected results. An economic application to the long-run US money demand function demonstrates the practical importance of this methodology.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.