Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Statistical Learning Take on the Concordance Index for Survival Analysis (2302.12059v1)

Published 23 Feb 2023 in stat.ML and cs.LG

Abstract: The introduction of ML techniques to the field of survival analysis has increased the flexibility of modeling approaches, and ML based models have become state-of-the-art. These models optimize their own cost functions, and their performance is often evaluated using the concordance index (C-index). From a statistical learning perspective, it is therefore an important problem to analyze the relationship between the optimizers of the C-index and those of the ML cost functions. We address this issue by providing C-index Fisher-consistency results and excess risk bounds for several of the commonly used cost functions in survival analysis. We identify conditions under which they are consistent, under the form of three nested families of survival models. We also study the general case where no model assumption is made and present a new, off-the-shelf method that is shown to be consistent with the C-index, although computationally expensive at inference. Finally, we perform limited numerical experiments with simulated data to illustrate our theoretical findings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.