Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Neural Networks for Survival Analysis Based on a Multi-Task Framework (1801.05512v1)

Published 17 Jan 2018 in stat.ML and cs.LG

Abstract: Survival analysis/time-to-event models are extremely useful as they can help companies predict when a customer will buy a product, churn or default on a loan, and therefore help them improve their ROI. In this paper, we introduce a new method to calculate survival functions using the Multi-Task Logistic Regression (MTLR) model as its base and a deep learning architecture as its core. Based on the Concordance index (C-index) and Brier score, this method outperforms the MTLR in all the experiments disclosed in this paper as well as the Cox Proportional Hazard (CoxPH) model when nonlinear dependencies are found.

Citations (119)

Summary

We haven't generated a summary for this paper yet.