Papers
Topics
Authors
Recent
Search
2000 character limit reached

Discovery of sparse hysteresis models for piezoelectric materials

Published 10 Feb 2023 in cs.LG | (2302.05313v5)

Abstract: This article presents an approach for modelling hysteresis in piezoelectric materials, that leverages recent advancements in machine learning, particularly in sparse-regression techniques. While sparse regression has previously been used to model various scientific and engineering phenomena, its application to nonlinear hysteresis modelling in piezoelectric materials has yet to be explored. The study employs the least-squares algorithm with a sequential threshold to model the dynamic system responsible for hysteresis, resulting in a concise model that accurately predicts hysteresis for both simulated and experimental piezoelectric material data. Several numerical experiments are performed, including learning butterfly-shaped hysteresis and modelling real-world hysteresis data for a piezoelectric actuator. The presented approach is compared to traditional regression-based and neural network methods, demonstrating its efficiency and robustness. Source code is available at https://github.com/chandratue/SmartHysteresis

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.