Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inverse NN Modelling of a Piezoelectric Stage with Dominant Variable (2007.15792v1)

Published 31 Jul 2020 in eess.SY and cs.SY

Abstract: This paper presents an approach for developing a neural network inverse model of a piezoelectric positioning stage, which exhibits rate-dependent, asymmetric hysteresis. It is shown that using both the velocity and the acceleration as inputs results in over-fitting. To overcome this, a rough analytical model of the actuator is derived and by measuring its response to excitation, the velocity signal is identified as the dominant variable. By setting the input space of the neural network to only the dominant variable, an inverse model with good predictive ability is obtained. Training of the network is accomplished using the Levenberg-Marquardt algorithm. Finally, the effectiveness of the proposed approach is experimentally demonstrated.

Summary

We haven't generated a summary for this paper yet.