Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Ensemble reweighting using Cryo-EM particles (2212.05320v1)

Published 10 Dec 2022 in q-bio.BM and physics.bio-ph

Abstract: Cryo-electron microscopy (cryo-EM) has recently become a premier method for obtaining high-resolution structures of biological macromolecules. However, it is limited to biomolecular samples with low conformational heterogeneity, where all the conformations can be well-sampled at many projection angles. While cryo-EM technically provides single-molecule data for heterogeneous molecules, most existing reconstruction tools cannot extract the full distribution of possible molecular configurations. To overcome these limitations, we build on a prior Bayesian approach and develop an ensemble refinement framework that estimates the ensemble density from a set of cryo-EM particles by reweighting a prior ensemble of conformations, e.g., from molecular dynamics simulations or structure prediction tools. Our work is a general approach to recovering the equilibrium probability density of the biomolecule directly in conformational space from single-molecule data. To validate the framework, we study the extraction of state populations and free energies for a simple toy model and from synthetic cryo-EM images of a simulated protein that explores multiple folded and unfolded conformations.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.