Cryo-EM as a Stochastic Inverse Problem (2509.05541v1)
Abstract: Cryo-electron microscopy (Cryo-EM) enables high-resolution imaging of biomolecules, but structural heterogeneity remains a major challenge in 3D reconstruction. Traditional methods assume a discrete set of conformations, limiting their ability to recover continuous structural variability. In this work, we formulate cryo-EM reconstruction as a stochastic inverse problem (SIP) over probability measures, where the observed images are modeled as the push-forward of an unknown distribution over molecular structures via a random forward operator. We pose the reconstruction problem as the minimization of a variational discrepancy between observed and simulated image distributions, using statistical distances such as the KL divergence and the Maximum Mean Discrepancy. The resulting optimization is performed over the space of probability measures via a Wasserstein gradient flow, which we numerically solve using particles to represent and evolve conformational ensembles. We validate our approach using synthetic examples, including a realistic protein model, which demonstrates its ability to recover continuous distributions over structural states. We analyze the connection between our formulation and Maximum A Posteriori (MAP) approaches, which can be interpreted as instances of the discretize-then-optimize (DTO) framework. We further provide a consistency analysis, establishing conditions under which DTO methods, such as MAP estimation, converge to the solution of the underlying infinite-dimensional continuous problem. Beyond cryo-EM, the framework provides a general methodology for solving SIPs involving random forward operators.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.