Evolutionary-based quantum architecture search (2212.00421v1)
Abstract: Quantum architecture search (QAS) is desired to construct a powerful and general QAS platform which can significantly accelerate quantum advantages in error-prone and depth limited quantum circuits in today Noisy Intermediate-Scale Quantum (NISQ) era. In this paper, we propose an evolutionary-based quantum architecture search (EQAS) scheme for the optimal layout to balance the higher expressive power and the trainable ability. In EQAS, each layout of quantum circuits, i.e quantum circuit architecture(QCA), is first encoded into a binary string, which is called quantum genes later. Then, an algorithm to remove the redundant parameters in QCA is performed according to the eigenvalues of the corresponding quantum Fisher information matrix (QFIM). Later, each QCA is evaluated by the normalized fitness, so that the sampling rate could be obtained to sample the parent generation by the Roulette Wheel selection strategy. Thereafter, the mutation and crossover are applied to get the next generation. EQAS is verified by the classification task in quantum machine learning for three datasets. The results show that the proposed EQAS can search for the optimal QCA with less parameterized gates, and the higher accuracies are obtained by adopting EQAS for the classification tasks over three dataset.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.