Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum circuit architecture search for variational quantum algorithms (2010.10217v3)

Published 20 Oct 2020 in quant-ph and cs.LG

Abstract: Variational quantum algorithms (VQAs) are expected to be a path to quantum advantages on noisy intermediate-scale quantum devices. However, both empirical and theoretical results exhibit that the deployed ansatz heavily affects the performance of VQAs such that an ansatz with a larger number of quantum gates enables a stronger expressivity, while the accumulated noise may render a poor trainability. To maximally improve the robustness and trainability of VQAs, here we devise a resource and runtime efficient scheme termed quantum architecture search (QAS). In particular, given a learning task, QAS automatically seeks a near-optimal ansatz (i.e., circuit architecture) to balance benefits and side-effects brought by adding more noisy quantum gates to achieve a good performance. We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks. In the problems studied, numerical and experimental results show that QAS can not only alleviate the influence of quantum noise and barren plateaus, but also outperforms VQAs with pre-selected ansatze.

Citations (119)

Summary

We haven't generated a summary for this paper yet.