Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evolutionary Quantum Architecture Search for Parametrized Quantum Circuits (2208.11167v1)

Published 23 Aug 2022 in cs.NE and quant-ph

Abstract: Recent advancements in quantum computing have shown promising computational advantages in many problem areas. As one of those areas with increasing attention, hybrid quantum-classical machine learning systems have demonstrated the capability to solve various data-driven learning tasks. Recent works show that parameterized quantum circuits (PQCs) can be used to solve challenging reinforcement learning (RL) tasks with provable learning advantages. While existing works yield potentials of PQC-based methods, the design choices of PQC architectures and their influences on the learning tasks are generally underexplored. In this work, we introduce EQAS-PQC, an evolutionary quantum architecture search framework for PQC-based models, which uses a population-based genetic algorithm to evolve PQC architectures by exploring the search space of quantum operations. Experimental results show that our method can significantly improve the performance of hybrid quantum-classical models in solving benchmark reinforcement problems. We also model the probability distributions of quantum operations in top-performing architectures to identify essential design choices that are critical to the performance.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Li Ding (35 papers)
  2. Lee Spector (30 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.