Papers
Topics
Authors
Recent
Search
2000 character limit reached

Advancing the State-of-the-Art for ECG Analysis through Structured State Space Models

Published 14 Nov 2022 in cs.LG, eess.SP, and stat.ML | (2211.07579v1)

Abstract: The field of deep-learning-based ECG analysis has been largely dominated by convolutional architectures. This work explores the prospects of applying the recently introduced structured state space models (SSMs) as a particularly promising approach due to its ability to capture long-term dependencies in time series. We demonstrate that this approach leads to significant improvements over the current state-of-the-art for ECG classification, which we trace back to individual pathologies. Furthermore, the model's ability to capture long-term dependencies allows to shed light on long-standing questions in the literature such as the optimal sampling rate or window size to train classification models. Interestingly, we find no evidence for using data sampled at 500Hz as opposed to 100Hz and no advantages from extending the model's input size beyond 3s. Based on this very promising first assessment, SSMs could develop into a new modeling paradigm for ECG analysis.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.