Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diffusion-based Conditional ECG Generation with Structured State Space Models (2301.08227v2)

Published 19 Jan 2023 in eess.SP, cs.LG, and stat.ML

Abstract: Synthetic data generation is a promising solution to address privacy issues with the distribution of sensitive health data. Recently, diffusion models have set new standards for generative models for different data modalities. Also very recently, structured state space models emerged as a powerful modeling paradigm to capture long-term dependencies in time series. We put forward SSSD-ECG, as the combination of these two technologies, for the generation of synthetic 12-lead electrocardiograms conditioned on more than 70 ECG statements. Due to a lack of reliable baselines, we also propose conditional variants of two state-of-the-art unconditional generative models. We thoroughly evaluate the quality of the generated samples, by evaluating pretrained classifiers on the generated data and by evaluating the performance of a classifier trained only on synthetic data, where SSSD-ECG clearly outperforms its GAN-based competitors. We demonstrate the soundness of our approach through further experiments, including conditional class interpolation and a clinical Turing test demonstrating the high quality of the SSSD-ECG samples across a wide range of conditions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. A. Abbas and S. U. Khan, “A review on the state-of-the-art privacy-preserving approaches in the e-health clouds,” IEEE Journal of Biomedical and Health Informatics, vol. 18, pp. 1431–1441, 2014.
  2. J. L. Fernández-Alemán, I. C. Señor, P. Ángel Oliver Lozoya, and A. Toval, “Security and privacy in electronic health records: A systematic literature review,” Journal of Biomedical Informatics, vol. 46, no. 3, pp. 541–562, 2013.
  3. R. Kumar, W. Wang, J. Kumar, T. Yang, A. Khan, W. Ali, and I. Ali, “An integration of blockchain and ai for secure data sharing and detection of ct images for the hospitals,” Computerized Medical Imaging and Graphics, vol. 87, p. 101812, 2021.
  4. J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang, “Federated learning for healthcare informatics,” Journal of Healthcare Informatics Research, vol. 5, no. 1, pp. 1–19, Nov. 2020.
  5. H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov, “See through gradients: Image batch recovery via gradinversion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16 337–16 346.
  6. P. Madley-Dowd, R. Hughes, K. Tilling, and J. Heron, “The proportion of missing data should not be used to guide decisions on multiple imputation,” Journal of Clinical Epidemiology, vol. 110, pp. 63–73, 2019.
  7. T. Shadbahr, M. Roberts, J. Stanczuk, J. Gilbey, P. Teare, S. Dittmer, M. Thorpe, R. V. Torne, E. Sala, P. Lio, M. Patel, A.-C. Collaboration, J. H. F. Rudd, T. Mirtti, A. Rannikko, J. A. D. Aston, J. Tang, and C.-B. Schönlieb, “Classification of datasets with imputed missing values: does imputation quality matter?” arXiv preprint 2206.08478, 2022.
  8. A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity natural image synthesis,” arXiv preprint 1809.11096, 2018.
  9. P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780–8794.
  10. R. Child, S. Gray, A. Radford, and I. Sutskever, “Generating long sequences with sparse transformers,” arXiv preprint 1904.1050ß, 2019.
  11. A. M. Delaney, E. Brophy, and T. E. Ward, “Synthesis of realistic ecg using generative adversarial networks,” arXiv preprint 1909.09150, 2019.
  12. M. Seibold, A. Hoch, M. Farshad, N. Navab, and P. Fürnstahl, “Conditional generative data augmentation for clinical audio datasets,” in Medical Image Computing and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part VII.   Springer, 2022, pp. 345–354.
  13. K. Falahkheirkhah, S. Tiwari, K. Yeh, S. Gupta, L. Herrera-Hernandez, M. R. McCarthy, R. E. Jimenez, J. C. Cheville, and R. Bhargava, “Deepfake histologic images for enhancing digital pathology,” Laboratory Investigation, vol. 103, no. 1, p. 100006, 2023.
  14. E. J. Topol, “What’s lurking in your electrocardiogram?” The Lancet, vol. 397, no. 10276, p. 785, 2021.
  15. P. Wagner, N. Strodthoff, R.-D. Bousseljot, D. Kreiseler, F. I. Lunze, W. Samek, and T. Schaeffter, “PTB-XL, a large publicly available electrocardiography dataset,” Scientific Data, vol. 7, no. 1, p. 154, 2020.
  16. P. Wagner, N. Strodthoff, R.-D. Bousseljot, W. Samek, and T. Schaeffter, “PTB-XL, a large publicly available electrocardiography dataset,” 2020.
  17. A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, “PhysioBank, PhysioToolkit, and PhysioNet,” Circulation, vol. 101, no. 23, pp. e215–e220, 2000.
  18. T. Mehari and N. Strodthoff, “Advancing the State-of-the-Art for ECG Analysis through Structured State Space Models,” in arXiv, 2022, extended abstract.
  19. N. Strodthoff, P. Wagner, T. Schaeffter, and W. Samek, “Deep learning for ecg analysis: Benchmarks and insights from ptb-xl,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 5, pp. 1519–1528, 2021.
  20. T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks for image classification with convolutional neural networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 558–567.
  21. J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning using nonequilibrium thermodynamics,” in Proceedings of the 32nd International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, vol. 37, 07–09 Jul 2015, pp. 2256–2265.
  22. N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and W. Chan, “Wavegrad: Estimating gradients for waveform generation,” in International Conference on Learning Representations, 2020.
  23. Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Diffwave: A versatile diffusion model for audio synthesis,” in 9th International Conference on Learning Representations, ICLR 2021, 2021.
  24. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Advances in Neural Information Processing Systems, vol. 33, 2020, pp. 6840–6851.
  25. J. Ho, C. Saharia, W. Chan, D. Fleet, M. Norouzi, and T. Salimans, “Cascaded diffusion models for high fidelity image generation,” J. Mach. Learn. Res., vol. 23, pp. 47:1–47:33, 2022.
  26. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10 684–10 695.
  27. J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet, “Video diffusion models,” arXiv preprint 2204.03458, 2022.
  28. A. Gu, K. Goel, and C. Ré, “Efficiently modeling long sequences with structured state spaces,” in International Conference on Learning Representations, 2022.
  29. A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré, “Hippo: Recurrent memory with optimal polynomial projections,” in Advances in Neural Information Processing Systems, vol. 33, 2020, pp. 1474–1487.
  30. Y. Sang, M. Beetz, and V. Grau, “Generation of 12-lead electrocardiogram with subject-specific, image-derived characteristics using a conditional variational autoencoder,” in 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), 2022, pp. 1–5.
  31. M. A. Rahhal, Y. Bazi, H. AlHichri, N. Alajlan, F. Melgani, and R. Yager, “Deep learning approach for active classification of electrocardiogram signals,” Information Sciences, vol. 345, pp. 340–354, 2016.
  32. V. Thambawita, J. L. Isaksen, S. A. Hicks, J. Ghouse, G. Ahlberg, A. Linneberg, N. Grarup, C. Ellervik, M. S. Olesen, T. Hansen, C. Graff, N.-H. Holstein-Rathlou, I. Strümke, H. L. Hammer, M. M. Maleckar, P. Halvorsen, M. A. Riegler, and J. K. Kanters, “DeepFake electrocardiograms using generative adversarial networks are the beginning of the end for privacy issues in medicine,” Sci. Rep., vol. 11, no. 1, p. 21896, Nov. 2021.
  33. F. Zhu, F. Ye, Y. Fu, Q. Liu, and B. Shen, “Electrocardiogram generation with a bidirectional LSTM-CNN generative adversarial network,” Scientific Reports, vol. 9, 2019.
  34. T. Golany, G. Lavee, S. Tejman Yarden, and K. Radinsky, “Improving ecg classification using generative adversarial networks,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 08, pp. 13 280–13 285, Apr. 2020.
  35. X. Li, V. Metsis, H. Wang, and A. H. H. Ngu, “Tts-gan: A transformer-based time-series generative adversarial network,” in Artificial Intelligence in Medicine, M. Michalowski, S. S. R. Abidi, and S. Abidi, Eds.   Cham: Springer International Publishing, 2022, pp. 133–143.
  36. T. Golany, K. Radinsky, and D. Freedman, “SimGANs: Simulator-based generative adversarial networks for ECG synthesis to improve deep ECG classification,” in Proceedings of the 37th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, H. D. III and A. Singh, Eds., vol. 119.   PMLR, 13–18 Jul 2020, pp. 3597–3606.
  37. T. Golany and K. Radinsky, “Pgans: Personalized generative adversarial networks for ecg synthesis to improve patient-specific deep ecg classification,” Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 557–564, Jul. 2019.
  38. J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative adversarial networks,” in Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, Eds., vol. 32.   Curran Associates, Inc., 2019.
  39. E. Adib, A. Fernandez, F. Afghah, and J. J. Prevost, “Synthetic ecg signal generation using probabilistic diffusion models,” 2023.
  40. H. Chung, J. Kim, J.-m. Kwon, K.-H. Jeon, M. S. Lee, and E. Choi, “Text-to-ecg: 12-lead electrocardiogram synthesis conditioned on clinical text reports,” in ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2023, pp. 1–5.
  41. J. L. Alcaraz and N. Strodthoff, “Diffusion-based time series imputation and forecasting with structured state space models,” Transactions on Machine Learning Research, 2022.
  42. J. M. L. Alcaraz and N. Strodthoff, “SSSD-ECG public code repository,” https://zenodo.org/account/settings/github/repository/AI4HealthUOL/SSSD-ECG, accessed: 2022-12-31.
  43. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,” Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.
  44. H. De Vries, F. Strub, J. Mary, H. Larochelle, O. Pietquin, and A. C. Courville, “Modulating early visual processing by language,” Advances in Neural Information Processing Systems, vol. 30, 2017.
  45. A. Alaa, B. Van Breugel, E. S. Saveliev, and M. van der Schaar, “How faithful is your synthetic data? Sample-level metrics for evaluating and auditing generative models,” in Proceedings of the 39th International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato, Eds., vol. 162.   PMLR, 17–23 Jul 2022, pp. 290–306.
  46. J. M. L. Alcaraz and N. Strodthoff, “SSSD-ECG data repository,” https://figshare.com/s/43df16e4a50e4dd0a0c5, accessed: 2022-01-19.
Citations (36)

Summary

We haven't generated a summary for this paper yet.