Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Output Regulation via Gaussian Processes and Luenberger Internal Models (2210.15938v1)

Published 28 Oct 2022 in eess.SY and cs.SY

Abstract: This paper deals with the problem of adaptive output regulation for multivariable nonlinear systems by presenting a learning-based adaptive internal model-based design strategy. The approach builds on the recently proposed adaptive internal model design techniques based on the theory of nonlinear Luenberger observers, and the adaptation side is approached as a probabilistic regression problem. In particular, Gaussian process priors are employed to cope with the learning problem. Unlike the previous approaches in the field, here only coarse assumptions about the friend structure are required, making the proposed approach suitable for applications where the exosystem is highly uncertain. The paper presents performance bounds on the attained regulation error and numerical simulations showing how the proposed method outperforms previous approaches.

Summary

We haven't generated a summary for this paper yet.