Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonparametric Steady-state Learning for Robust Output Regulation of Nonlinear Output Feedback Systems (2402.16170v1)

Published 25 Feb 2024 in eess.SY, cs.SY, and math.OC

Abstract: This article addresses the nonadaptive and robust output regulation problem of the general nonlinear output feedback system with error output. The global robust output regulation problem for a class of general output feedback nonlinear systems with an uncertain exosystem and high relative degree can be tackled by constructing a linear generic internal model provided that a continuous nonlinear mapping exists. Leveraging the presented nonadaptive framework facilitates the conversion of the nonlinear robust output regulation problem into a robust nonadaptive stabilization endeavour for the augmented system endowed with Input-to-State Stable dynamics, removing the need for constructing a specific Lyapunov function with positive semidefinite derivatives. To ensure the feasibility of the nonlinear mapping, the approach is extended by incorporating the nonparametric learning framework. Moreover, the introduced nonparametric learning framework provides the ability to learn the dynamics of the steady-state/input behaviour from the signal generated from the internal model only using the output error feedback. As a result, the nonadaptive/nonparametric approach can be advantageous by guaranteeing convergence of the estimation and tracking error even when the underlying controlled system dynamics are complex or poorly understood. The effectiveness of the theoretical results is illustrated for a controlled duffing system and a continuously stirred tank reactor

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. State and parameter estimation: A nonlinear Luenberger observer approach. IEEE Transactions on Automatic Control, 62(2), 973–980.
  2. Adaptive sinusoidal disturbance cancellation for unknown LTI systems despite input delay. Automatica, 58, 131–138.
  3. Approximate nonlinear regulation via identification-based adaptive internal models. IEEE Transactions on Automatic Control, 66(8), 3534–3549.
  4. Internal models in control, bioengineering, and neuroscience. Annual Review of Control, Robotics, and Autonomous Systems, 5, 55–79.
  5. Limit sets, zero dynamics, and internal models in the problem of nonlinear output regulation. IEEE Transactions on Automatic Control, 48(10), 1712–1723.
  6. Chen, Z. (2023). Lasalle–Yoshizawa Theorem for nonlinear systems with external inputs: A counter-example. Automatica, 147, 110636.
  7. Stabilization and Regulation of Nonlinear Systems. Springer, Cham, Switzerland.
  8. Output feedback approximation-free prescribed performance tracking control for uncertain mimo nonlinear systems. IEEE Transactions on Automatic Control, 65(12), 5058–5069.
  9. Ding, Z. (2003). Global stabilization and disturbance suppression of a class of nonlinear systems with uncertain internal model. Automatica, 39(3), 471–479.
  10. The internal model principle of control theory. Automatica, 12(5), 457–465.
  11. Huang, J. (2001). Remarks on the robust output regulation problem for nonlinear systems. IEEE Transactions on Automatic Control, 46(12), 2028–2031.
  12. Huang, J. (2004). Nonlinear Output Regulation: Theory and Applications. SIAM, Philadelphia.
  13. A general framework for tackling the output regulation problem. IEEE Transactions on Automatic Control, 49(12), 2203–2218.
  14. On a robust nonlinear servomechanism problem. IEEE Transactions on Automatic Control, 39(7), 1510–1513.
  15. Output regulation of nonlinear systems. IEEE Transactions on Automatic Control, 35(2), 131–140.
  16. Robust design of nonlinear internal models without adaptation. Automatica, 48(10), 2409–2419.
  17. A unifying framework for global regulation via nonlinear output feedback: From ISS to iISS. IEEE Transactions on Automatic Control, 49(4), 549–562.
  18. Nonlinear observers for autonomous Lipschitz continuous systems. IEEE Transactions on Automatic Control, 48(3), 451–464.
  19. Nonlinear and Adaptive Control Design. John Wiley & Sons, Inc., New York.
  20. Parameter convergence and minimal internal model with an adaptive output regulation problem. Automatica, 45(5), 1306–1311.
  21. Adaptive learning control of nonlinear systems by output error feedback. IEEE Transactions on Automatic Control, 52(7), 1232–1248.
  22. Adaptive tracking control of uncertain euler–lagrange systems subject to external disturbances. Automatica, 104, 207–219.
  23. Uniform practical nonlinear output regulation. IEEE Transactions on Automatic Control, 53(5), 1184–1202.
  24. Output stabilization via nonlinear Luenberger observers. SIAM Journal on Control and Optimization, 45(6), 2277–2298.
  25. Output regulation for linear systems via adaptive internal model. IEEE Transactions on Automatic Control, 48(12), 2199–2202.
  26. Nikiforov, V.O. (1998). Adaptive non-linear tracking with complete compensation of unknown disturbances. European Journal of Control, 4(2), 132–139.
  27. Semi-global nonlinear output regulation with adaptive internal model. IEEE Transactions on Automatic Control, 46(8), 1178–1194.
  28. Changing supply functions in input/state stable systems. IEEE Transactions on Automatic Control, 40(8), 1476–1478.
  29. Sontag, E.D. (2019). Input-to-state stability. In J. Baillieul & T. Samad (eds.), Encyclopedia of Systems and Control, 1–9. Springer, London.
  30. Adaptive regulation for minimum phase systems with unknown relative degree and uncertain exosystems. Automatica, 147, 110678.
  31. On the dynamic behavior of continuous stirred tank reactors. Chemical Engineering Science, 29(4), 967–985.
  32. A nonparametric learning framework for nonlinear robust output regulation. arXiv preprint arXiv:2309.14645.
  33. A generic internal model for robust output regulation problem for plants subject to an uncertain exosystem. In Proceedings of the IEEE 15th International Conference on Control and Automation, 1179–1184.
  34. An explicit solution to the matrix equation AX-XF= BY. Linear Algebra and Its Applications, 402, 345–366.
Citations (2)

Summary

We haven't generated a summary for this paper yet.