Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling Large Dimensional Datasets with Markov Switching Factor Models (2210.09828v5)

Published 18 Oct 2022 in econ.EM

Abstract: We study a novel large dimensional approximate factor model with regime changes in the loadings driven by a latent first order Markov process. By exploiting the equivalent linear representation of the model, we first recover the latent factors by means of Principal Component Analysis. We then cast the model in state-space form, and we estimate loadings and transition probabilities through an EM algorithm based on a modified version of the Baum-Lindgren-Hamilton-Kim filter and smoother that makes use of the factors previously estimated. Our approach is appealing as it provides closed form expressions for all estimators. More importantly, it does not require knowledge of the true number of factors. We derive the theoretical properties of the proposed estimation procedure, and we show their good finite sample performance through a comprehensive set of Monte Carlo experiments. The empirical usefulness of our approach is illustrated through three applications to large U.S. datasets of stock returns, macroeconomic variables, and inflation indexes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com