Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Estimation of large approximate dynamic matrix factor models based on the EM algorithm and Kalman filtering (2502.04112v2)

Published 6 Feb 2025 in stat.ME and econ.EM

Abstract: This paper considers an approximate dynamic matrix factor model that accounts for the time series nature of the data by explicitly modelling the time evolution of the factors. We study estimation of the model parameters based on the Expectation Maximization (EM) algorithm, implemented jointly with the Kalman smoother which gives estimates of the factors. We establish the consistency of the estimated loadings and factor matrices as the sample size $T$ and the matrix dimensions $p_1$ and $p_2$ diverge to infinity. We then illustrate two immediate extensions of this approach to: (a) the case of arbitrary patterns of missing data and (b) the presence of common stochastic trends. The finite sample properties of the estimators are assessed through a large simulation study and two applications on: (i) a financial dataset of volatility proxies and (ii) a macroeconomic dataset covering the main euro area countries.

Summary

We haven't generated a summary for this paper yet.