Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Transportability of model-based estimands in evidence synthesis (2210.01757v6)

Published 4 Oct 2022 in stat.ME and stat.AP

Abstract: In evidence synthesis, effect modifiers are typically described as variables that induce treatment effect heterogeneity at the individual level, through treatment-covariate interactions in an outcome model parametrized at such level. As such, effect modification is defined with respect to a conditional measure, but marginal effect estimates are required for population-level decisions in health technology assessment. For non-collapsible measures, purely prognostic variables that are not determinants of treatment response at the individual level may modify marginal effects, even where there is individual-level treatment effect homogeneity. With heterogeneity, marginal effects for measures that are not directly collapsible cannot be expressed in terms of marginal covariate moments, and generally depend on the joint distribution of conditional effect measure modifiers and purely prognostic variables. There are implications for recommended practices in evidence synthesis. Unadjusted anchored indirect comparisons can be biased in the absence of individual-level treatment effect heterogeneity, or when marginal covariate moments are balanced across studies. Covariate adjustment may be necessary to account for cross-study imbalances in joint covariate distributions involving purely prognostic variables. In the absence of individual patient data for the target, covariate adjustment approaches are inherently limited in their ability to remove bias for measures that are not directly collapsible. Directly collapsible measures would facilitate the transportability of marginal effects between studies by: (1) reducing dependence on model-based covariate adjustment where there is individual-level treatment effect homogeneity or marginal covariate moments are balanced; and (2) facilitating the selection of baseline covariates for adjustment where there is individual-level treatment effect heterogeneity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube