Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Methods for Population Adjustment with Limited Access to Individual Patient Data: A Review and Simulation Study (2004.14800v8)

Published 30 Apr 2020 in stat.AP

Abstract: Population-adjusted indirect comparisons estimate treatment effects when access to individual patient data is limited and there are cross-trial differences in effect modifiers. Popular methods include matching-adjusted indirect comparison (MAIC) and simulated treatment comparison (STC). There is limited formal evaluation of these methods and whether they can be used to accurately compare treatments. Thus, we undertake a comprehensive simulation study to compare standard unadjusted indirect comparisons, MAIC and STC across 162 scenarios. This simulation study assumes that the trials are investigating survival outcomes and measure continuous covariates, with the log hazard ratio as the measure of effect. MAIC yields unbiased treatment effect estimates under no failures of assumptions. The typical usage of STC produces bias because it targets a conditional treatment effect where the target estimand should be a marginal treatment effect. The incompatibility of estimates in the indirect comparison leads to bias as the measure of effect is non-collapsible. Standard indirect comparisons are systematically biased, particularly under stronger covariate imbalance and interaction effects. Standard errors and coverage rates are often valid in MAIC but the robust sandwich variance estimator underestimates variability where effective sample sizes are small. Interval estimates for the standard indirect comparison are too narrow and STC suffers from bias-induced undercoverage. MAIC provides the most accurate estimates and, with lower degrees of covariate overlap, its bias reduction outweighs the loss in effective sample size and precision under no failures of assumptions. An important future objective is the development of an alternative formulation to STC that targets a marginal treatment effect.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube