Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Label-Deficient Keyword Spotting Through Self-Supervised Pretraining (2210.01703v3)

Published 4 Oct 2022 in cs.SD, cs.HC, cs.LG, and eess.AS

Abstract: Keyword Spotting (KWS) models are becoming increasingly integrated into various systems, e.g. voice assistants. To achieve satisfactory performance, these models typically rely on a large amount of labelled data, limiting their applications only to situations where such data is available. Self-supervised Learning (SSL) methods can mitigate such a reliance by leveraging readily-available unlabelled data. Most SSL methods for speech have primarily been studied for large models, whereas this is not ideal, as compact KWS models are generally required. This paper explores the effectiveness of SSL on small models for KWS and establishes that SSL can enhance the performance of small KWS models when labelled data is scarce. We pretrain three compact transformer-based KWS models using Data2Vec, and fine-tune them on a label-deficient setup of the Google Speech Commands data set. It is found that Data2Vec pretraining leads to a significant increase in accuracy, with label-deficient scenarios showing an improvement of 8.22% 11.18% absolute accuracy.

Citations (2)

Summary

We haven't generated a summary for this paper yet.