Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Lightweight dynamic filter for keyword spotting (2109.11165v4)

Published 23 Sep 2021 in eess.AS

Abstract: Keyword Spotting (KWS) from speech signals is widely applied to perform fully hands-free speech recognition. The KWS network is designed as a small-footprint model so it can continuously be active. Recent efforts have explored dynamic filter-based models in deep learning frameworks to enhance the system's robustness or accuracy. However, as a dynamic filter framework requires high computational costs, the implementation is limited to the computational condition of the device. In this paper, we propose a lightweight dynamic filter to improve the performance of KWS. Our proposed model divides the dynamic filter into two branches to reduce computational complexity: pixel level and instance level. The proposed lightweight dynamic filter is applied to the front end of KWS to enhance the separability of the input data. The experimental results show that our model is robustly working on unseen noise and small training data environments by using a small computational resource.

Citations (3)

Summary

We haven't generated a summary for this paper yet.