Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Game Difficulty Prediction Using Factorization Machines (2209.13495v1)

Published 6 Sep 2022 in cs.HC and cs.AI

Abstract: The accurate and personalized estimation of task difficulty provides many opportunities for optimizing user experience. However, user diversity makes such difficulty estimation hard, in that empirical measurements from some user sample do not necessarily generalize to others. In this paper, we contribute a new approach for personalized difficulty estimation of game levels, borrowing methods from content recommendation. Using factorization machines (FM) on a large dataset from a commercial puzzle game, we are able to predict difficulty as the number of attempts a player requires to pass future game levels, based on observed attempt counts from earlier levels and levels played by others. In addition to performance and scalability, FMs offer the benefit that the learned latent variable model can be used to study the characteristics of both players and game levels that contribute to difficulty. We compare the approach to a simple non-personalized baseline and a personalized prediction using Random Forests. Our results suggest that FMs are a promising tool enabling game designers to both optimize player experience and learn more about their players and the game.

Citations (3)

Summary

We haven't generated a summary for this paper yet.